| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2rexbidv | Unicode version | ||
| Description: Formula-building rule for restricted existential quantifiers (deduction form). (Contributed by NM, 28-Jan-2006.) |
| Ref | Expression |
|---|---|
| 2ralbidv.1 |
|
| Ref | Expression |
|---|---|
| 2rexbidv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2ralbidv.1 |
. . 3
| |
| 2 | 1 | rexbidv 2507 |
. 2
|
| 3 | 2 | rexbidv 2507 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-4 1533 ax-17 1549 ax-ial 1557 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-rex 2490 |
| This theorem is referenced by: f1oiso 5897 elrnmpog 6060 elrnmpo 6061 ralrnmpo 6062 rexrnmpo 6063 ovelrn 6097 eroveu 6715 genipv 7624 genpelxp 7626 genpelvl 7627 genpelvu 7628 axcnre 7996 apreap 8662 apreim 8678 aprcl 8721 aptap 8725 bezoutlemnewy 12350 bezoutlema 12353 bezoutlemb 12354 pythagtriplem19 12638 pceu 12651 pcval 12652 pczpre 12653 pcdiv 12658 4sqlem2 12745 4sqlem3 12746 4sqlem4 12748 4sqexercise2 12755 4sqlemsdc 12756 4sq 12766 znunit 14454 txuni2 14761 txbas 14763 txdis1cn 14783 elply 15239 2sqlem2 15625 2sqlem8 15633 2sqlem9 15634 |
| Copyright terms: Public domain | W3C validator |