| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2rexbidv | Unicode version | ||
| Description: Formula-building rule for restricted existential quantifiers (deduction form). (Contributed by NM, 28-Jan-2006.) |
| Ref | Expression |
|---|---|
| 2ralbidv.1 |
|
| Ref | Expression |
|---|---|
| 2rexbidv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2ralbidv.1 |
. . 3
| |
| 2 | 1 | rexbidv 2507 |
. 2
|
| 3 | 2 | rexbidv 2507 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-4 1533 ax-17 1549 ax-ial 1557 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-rex 2490 |
| This theorem is referenced by: f1oiso 5895 elrnmpog 6058 elrnmpo 6059 ralrnmpo 6060 rexrnmpo 6061 ovelrn 6095 eroveu 6713 genipv 7622 genpelxp 7624 genpelvl 7625 genpelvu 7626 axcnre 7994 apreap 8660 apreim 8676 aprcl 8719 aptap 8723 bezoutlemnewy 12317 bezoutlema 12320 bezoutlemb 12321 pythagtriplem19 12605 pceu 12618 pcval 12619 pczpre 12620 pcdiv 12625 4sqlem2 12712 4sqlem3 12713 4sqlem4 12715 4sqexercise2 12722 4sqlemsdc 12723 4sq 12733 znunit 14421 txuni2 14728 txbas 14730 txdis1cn 14750 elply 15206 2sqlem2 15592 2sqlem8 15600 2sqlem9 15601 |
| Copyright terms: Public domain | W3C validator |