![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 2rexbidv | Unicode version |
Description: Formula-building rule for restricted existential quantifiers (deduction form). (Contributed by NM, 28-Jan-2006.) |
Ref | Expression |
---|---|
2ralbidv.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
2rexbidv |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2ralbidv.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | rexbidv 2495 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | rexbidv 2495 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-4 1521 ax-17 1537 ax-ial 1545 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-rex 2478 |
This theorem is referenced by: f1oiso 5870 elrnmpog 6032 elrnmpo 6033 ralrnmpo 6034 rexrnmpo 6035 ovelrn 6069 eroveu 6682 genipv 7571 genpelxp 7573 genpelvl 7574 genpelvu 7575 axcnre 7943 apreap 8608 apreim 8624 aprcl 8667 aptap 8671 bezoutlemnewy 12136 bezoutlema 12139 bezoutlemb 12140 pythagtriplem19 12423 pceu 12436 pcval 12437 pczpre 12438 pcdiv 12443 4sqlem2 12530 4sqlem3 12531 4sqlem4 12533 4sqexercise2 12540 4sqlemsdc 12541 4sq 12551 znunit 14158 txuni2 14435 txbas 14437 txdis1cn 14457 elply 14913 2sqlem2 15272 2sqlem8 15280 2sqlem9 15281 |
Copyright terms: Public domain | W3C validator |