ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2rexbidv Unicode version

Theorem 2rexbidv 2495
Description: Formula-building rule for restricted existential quantifiers (deduction form). (Contributed by NM, 28-Jan-2006.)
Hypothesis
Ref Expression
2ralbidv.1  |-  ( ph  ->  ( ps  <->  ch )
)
Assertion
Ref Expression
2rexbidv  |-  ( ph  ->  ( E. x  e.  A  E. y  e.  B  ps  <->  E. x  e.  A  E. y  e.  B  ch )
)
Distinct variable groups:    ph, x    ph, y
Allowed substitution hints:    ps( x, y)    ch( x, y)    A( x, y)    B( x, y)

Proof of Theorem 2rexbidv
StepHypRef Expression
1 2ralbidv.1 . . 3  |-  ( ph  ->  ( ps  <->  ch )
)
21rexbidv 2471 . 2  |-  ( ph  ->  ( E. y  e.  B  ps  <->  E. y  e.  B  ch )
)
32rexbidv 2471 1  |-  ( ph  ->  ( E. x  e.  A  E. y  e.  B  ps  <->  E. x  e.  A  E. y  e.  B  ch )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104   E.wrex 2449
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-4 1503  ax-17 1519  ax-ial 1527
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-rex 2454
This theorem is referenced by:  f1oiso  5805  elrnmpog  5965  elrnmpo  5966  ralrnmpo  5967  rexrnmpo  5968  ovelrn  6001  eroveu  6604  genipv  7471  genpelxp  7473  genpelvl  7474  genpelvu  7475  axcnre  7843  apreap  8506  apreim  8522  aprcl  8565  bezoutlemnewy  11951  bezoutlema  11954  bezoutlemb  11955  pythagtriplem19  12236  pceu  12249  pcval  12250  pczpre  12251  pcdiv  12256  4sqlem2  12341  4sqlem3  12342  4sqlem4  12344  txuni2  13050  txbas  13052  txdis1cn  13072  2sqlem2  13745  2sqlem8  13753  2sqlem9  13754
  Copyright terms: Public domain W3C validator