| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2rexbidv | Unicode version | ||
| Description: Formula-building rule for restricted existential quantifiers (deduction form). (Contributed by NM, 28-Jan-2006.) |
| Ref | Expression |
|---|---|
| 2ralbidv.1 |
|
| Ref | Expression |
|---|---|
| 2rexbidv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2ralbidv.1 |
. . 3
| |
| 2 | 1 | rexbidv 2531 |
. 2
|
| 3 | 2 | rexbidv 2531 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-4 1556 ax-17 1572 ax-ial 1580 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-rex 2514 |
| This theorem is referenced by: f1oiso 5950 elrnmpog 6117 elrnmpo 6118 ralrnmpo 6119 rexrnmpo 6120 ovelrn 6154 eroveu 6773 genipv 7696 genpelxp 7698 genpelvl 7699 genpelvu 7700 axcnre 8068 apreap 8734 apreim 8750 aprcl 8793 aptap 8797 bezoutlemnewy 12517 bezoutlema 12520 bezoutlemb 12521 pythagtriplem19 12805 pceu 12818 pcval 12819 pczpre 12820 pcdiv 12825 4sqlem2 12912 4sqlem3 12913 4sqlem4 12915 4sqexercise2 12922 4sqlemsdc 12923 4sq 12933 znunit 14623 txuni2 14930 txbas 14932 txdis1cn 14952 elply 15408 2sqlem2 15794 2sqlem8 15802 2sqlem9 15803 upgredg 15942 |
| Copyright terms: Public domain | W3C validator |