| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2rexbidv | Unicode version | ||
| Description: Formula-building rule for restricted existential quantifiers (deduction form). (Contributed by NM, 28-Jan-2006.) |
| Ref | Expression |
|---|---|
| 2ralbidv.1 |
|
| Ref | Expression |
|---|---|
| 2rexbidv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2ralbidv.1 |
. . 3
| |
| 2 | 1 | rexbidv 2509 |
. 2
|
| 3 | 2 | rexbidv 2509 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 ax-17 1550 ax-ial 1558 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-rex 2492 |
| This theorem is referenced by: f1oiso 5918 elrnmpog 6081 elrnmpo 6082 ralrnmpo 6083 rexrnmpo 6084 ovelrn 6118 eroveu 6736 genipv 7657 genpelxp 7659 genpelvl 7660 genpelvu 7661 axcnre 8029 apreap 8695 apreim 8711 aprcl 8754 aptap 8758 bezoutlemnewy 12432 bezoutlema 12435 bezoutlemb 12436 pythagtriplem19 12720 pceu 12733 pcval 12734 pczpre 12735 pcdiv 12740 4sqlem2 12827 4sqlem3 12828 4sqlem4 12830 4sqexercise2 12837 4sqlemsdc 12838 4sq 12848 znunit 14536 txuni2 14843 txbas 14845 txdis1cn 14865 elply 15321 2sqlem2 15707 2sqlem8 15715 2sqlem9 15716 upgredg 15848 |
| Copyright terms: Public domain | W3C validator |