ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2rexbidv Unicode version

Theorem 2rexbidv 2491
Description: Formula-building rule for restricted existential quantifiers (deduction form). (Contributed by NM, 28-Jan-2006.)
Hypothesis
Ref Expression
2ralbidv.1  |-  ( ph  ->  ( ps  <->  ch )
)
Assertion
Ref Expression
2rexbidv  |-  ( ph  ->  ( E. x  e.  A  E. y  e.  B  ps  <->  E. x  e.  A  E. y  e.  B  ch )
)
Distinct variable groups:    ph, x    ph, y
Allowed substitution hints:    ps( x, y)    ch( x, y)    A( x, y)    B( x, y)

Proof of Theorem 2rexbidv
StepHypRef Expression
1 2ralbidv.1 . . 3  |-  ( ph  ->  ( ps  <->  ch )
)
21rexbidv 2467 . 2  |-  ( ph  ->  ( E. y  e.  B  ps  <->  E. y  e.  B  ch )
)
32rexbidv 2467 1  |-  ( ph  ->  ( E. x  e.  A  E. y  e.  B  ps  <->  E. x  e.  A  E. y  e.  B  ch )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104   E.wrex 2445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-4 1498  ax-17 1514  ax-ial 1522
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-rex 2450
This theorem is referenced by:  f1oiso  5794  elrnmpog  5954  elrnmpo  5955  ralrnmpo  5956  rexrnmpo  5957  ovelrn  5990  eroveu  6592  genipv  7450  genpelxp  7452  genpelvl  7453  genpelvu  7454  axcnre  7822  apreap  8485  apreim  8501  aprcl  8544  bezoutlemnewy  11929  bezoutlema  11932  bezoutlemb  11933  pythagtriplem19  12214  pceu  12227  pcval  12228  pczpre  12229  pcdiv  12234  4sqlem2  12319  4sqlem3  12320  4sqlem4  12322  txuni2  12906  txbas  12908  txdis1cn  12928  2sqlem2  13601  2sqlem8  13609  2sqlem9  13610
  Copyright terms: Public domain W3C validator