ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elrnmpog Unicode version

Theorem elrnmpog 6031
Description: Membership in the range of an operation class abstraction. (Contributed by NM, 27-Aug-2007.) (Revised by Mario Carneiro, 31-Aug-2015.)
Hypothesis
Ref Expression
rngop.1  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
Assertion
Ref Expression
elrnmpog  |-  ( D  e.  V  ->  ( D  e.  ran  F  <->  E. x  e.  A  E. y  e.  B  D  =  C ) )
Distinct variable groups:    y, A    x, y, D
Allowed substitution hints:    A( x)    B( x, y)    C( x, y)    F( x, y)    V( x, y)

Proof of Theorem elrnmpog
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 eqeq1 2200 . . 3  |-  ( z  =  D  ->  (
z  =  C  <->  D  =  C ) )
212rexbidv 2519 . 2  |-  ( z  =  D  ->  ( E. x  e.  A  E. y  e.  B  z  =  C  <->  E. x  e.  A  E. y  e.  B  D  =  C ) )
3 rngop.1 . . 3  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
43rnmpo 6029 . 2  |-  ran  F  =  { z  |  E. x  e.  A  E. y  e.  B  z  =  C }
52, 4elab2g 2907 1  |-  ( D  e.  V  ->  ( D  e.  ran  F  <->  E. x  e.  A  E. y  e.  B  D  =  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1364    e. wcel 2164   E.wrex 2473   ran crn 4660    e. cmpo 5920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-cnv 4667  df-dm 4669  df-rn 4670  df-oprab 5922  df-mpo 5923
This theorem is referenced by:  txopn  14433  xmettxlem  14677  xmettx  14678
  Copyright terms: Public domain W3C validator