ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  infvalti Unicode version

Theorem infvalti 7052
Description: Alternate expression for the infimum. (Contributed by Jim Kingdon, 17-Dec-2021.)
Hypotheses
Ref Expression
eqinfti.ti  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  A ) )  -> 
( u  =  v  <-> 
( -.  u R v  /\  -.  v R u ) ) )
infvalti.ex  |-  ( ph  ->  E. x  e.  A  ( A. y  e.  B  -.  y R x  /\  A. y  e.  A  ( x R y  ->  E. z  e.  B  z R y ) ) )
Assertion
Ref Expression
infvalti  |-  ( ph  -> inf ( B ,  A ,  R )  =  (
iota_ x  e.  A  ( A. y  e.  B  -.  y R x  /\  A. y  e.  A  ( x R y  ->  E. z  e.  B  z R y ) ) ) )
Distinct variable groups:    u, A, v, y, z    ph, u, v    u, R, v, y, z    u, B, v, y, z    x, A   
x, B    x, R    ph, x, y, z, u, v

Proof of Theorem infvalti
StepHypRef Expression
1 df-inf 7015 . 2  |- inf ( B ,  A ,  R
)  =  sup ( B ,  A ,  `' R )
2 eqinfti.ti . . . . 5  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  A ) )  -> 
( u  =  v  <-> 
( -.  u R v  /\  -.  v R u ) ) )
32cnvti 7049 . . . 4  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  A ) )  -> 
( u  =  v  <-> 
( -.  u `' R v  /\  -.  v `' R u ) ) )
4 infvalti.ex . . . . 5  |-  ( ph  ->  E. x  e.  A  ( A. y  e.  B  -.  y R x  /\  A. y  e.  A  ( x R y  ->  E. z  e.  B  z R y ) ) )
54cnvinfex 7048 . . . 4  |-  ( ph  ->  E. x  e.  A  ( A. y  e.  B  -.  x `' R y  /\  A. y  e.  A  ( y `' R x  ->  E. z  e.  B  y `' R z ) ) )
63, 5supval2ti 7025 . . 3  |-  ( ph  ->  sup ( B ,  A ,  `' R
)  =  ( iota_ x  e.  A  ( A. y  e.  B  -.  x `' R y  /\  A. y  e.  A  (
y `' R x  ->  E. z  e.  B  y `' R z ) ) ) )
7 vex 2755 . . . . . . . . 9  |-  x  e. 
_V
8 vex 2755 . . . . . . . . 9  |-  y  e. 
_V
97, 8brcnv 4828 . . . . . . . 8  |-  ( x `' R y  <->  y R x )
109a1i 9 . . . . . . 7  |-  ( ph  ->  ( x `' R
y  <->  y R x ) )
1110notbid 668 . . . . . 6  |-  ( ph  ->  ( -.  x `' R y  <->  -.  y R x ) )
1211ralbidv 2490 . . . . 5  |-  ( ph  ->  ( A. y  e.  B  -.  x `' R y  <->  A. y  e.  B  -.  y R x ) )
138, 7brcnv 4828 . . . . . . . 8  |-  ( y `' R x  <->  x R
y )
1413a1i 9 . . . . . . 7  |-  ( ph  ->  ( y `' R x 
<->  x R y ) )
15 vex 2755 . . . . . . . . . 10  |-  z  e. 
_V
168, 15brcnv 4828 . . . . . . . . 9  |-  ( y `' R z  <->  z R
y )
1716a1i 9 . . . . . . . 8  |-  ( ph  ->  ( y `' R
z  <->  z R y ) )
1817rexbidv 2491 . . . . . . 7  |-  ( ph  ->  ( E. z  e.  B  y `' R
z  <->  E. z  e.  B  z R y ) )
1914, 18imbi12d 234 . . . . . 6  |-  ( ph  ->  ( ( y `' R x  ->  E. z  e.  B  y `' R z )  <->  ( x R y  ->  E. z  e.  B  z R
y ) ) )
2019ralbidv 2490 . . . . 5  |-  ( ph  ->  ( A. y  e.  A  ( y `' R x  ->  E. z  e.  B  y `' R z )  <->  A. y  e.  A  ( x R y  ->  E. z  e.  B  z R
y ) ) )
2112, 20anbi12d 473 . . . 4  |-  ( ph  ->  ( ( A. y  e.  B  -.  x `' R y  /\  A. y  e.  A  (
y `' R x  ->  E. z  e.  B  y `' R z ) )  <-> 
( A. y  e.  B  -.  y R x  /\  A. y  e.  A  ( x R y  ->  E. z  e.  B  z R
y ) ) ) )
2221riotabidv 5854 . . 3  |-  ( ph  ->  ( iota_ x  e.  A  ( A. y  e.  B  -.  x `' R y  /\  A. y  e.  A  ( y `' R x  ->  E. z  e.  B  y `' R z ) ) )  =  ( iota_ x  e.  A  ( A. y  e.  B  -.  y R x  /\  A. y  e.  A  (
x R y  ->  E. z  e.  B  z R y ) ) ) )
236, 22eqtrd 2222 . 2  |-  ( ph  ->  sup ( B ,  A ,  `' R
)  =  ( iota_ x  e.  A  ( A. y  e.  B  -.  y R x  /\  A. y  e.  A  (
x R y  ->  E. z  e.  B  z R y ) ) ) )
241, 23eqtrid 2234 1  |-  ( ph  -> inf ( B ,  A ,  R )  =  (
iota_ x  e.  A  ( A. y  e.  B  -.  y R x  /\  A. y  e.  A  ( x R y  ->  E. z  e.  B  z R y ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2160   A.wral 2468   E.wrex 2469   class class class wbr 4018   `'ccnv 4643   iota_crio 5851   supcsup 7012  infcinf 7013
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-br 4019  df-opab 4080  df-cnv 4652  df-iota 5196  df-riota 5852  df-sup 7014  df-inf 7015
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator