| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > infvalti | Unicode version | ||
| Description: Alternate expression for the infimum. (Contributed by Jim Kingdon, 17-Dec-2021.) |
| Ref | Expression |
|---|---|
| eqinfti.ti |
|
| infvalti.ex |
|
| Ref | Expression |
|---|---|
| infvalti |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-inf 7152 |
. 2
| |
| 2 | eqinfti.ti |
. . . . 5
| |
| 3 | 2 | cnvti 7186 |
. . . 4
|
| 4 | infvalti.ex |
. . . . 5
| |
| 5 | 4 | cnvinfex 7185 |
. . . 4
|
| 6 | 3, 5 | supval2ti 7162 |
. . 3
|
| 7 | vex 2802 |
. . . . . . . . 9
| |
| 8 | vex 2802 |
. . . . . . . . 9
| |
| 9 | 7, 8 | brcnv 4905 |
. . . . . . . 8
|
| 10 | 9 | a1i 9 |
. . . . . . 7
|
| 11 | 10 | notbid 671 |
. . . . . 6
|
| 12 | 11 | ralbidv 2530 |
. . . . 5
|
| 13 | 8, 7 | brcnv 4905 |
. . . . . . . 8
|
| 14 | 13 | a1i 9 |
. . . . . . 7
|
| 15 | vex 2802 |
. . . . . . . . . 10
| |
| 16 | 8, 15 | brcnv 4905 |
. . . . . . . . 9
|
| 17 | 16 | a1i 9 |
. . . . . . . 8
|
| 18 | 17 | rexbidv 2531 |
. . . . . . 7
|
| 19 | 14, 18 | imbi12d 234 |
. . . . . 6
|
| 20 | 19 | ralbidv 2530 |
. . . . 5
|
| 21 | 12, 20 | anbi12d 473 |
. . . 4
|
| 22 | 21 | riotabidv 5956 |
. . 3
|
| 23 | 6, 22 | eqtrd 2262 |
. 2
|
| 24 | 1, 23 | eqtrid 2274 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-cnv 4727 df-iota 5278 df-riota 5954 df-sup 7151 df-inf 7152 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |