Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > infvalti | Unicode version |
Description: Alternate expression for the infimum. (Contributed by Jim Kingdon, 17-Dec-2021.) |
Ref | Expression |
---|---|
eqinfti.ti | |
infvalti.ex |
Ref | Expression |
---|---|
infvalti | inf |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-inf 6950 | . 2 inf | |
2 | eqinfti.ti | . . . . 5 | |
3 | 2 | cnvti 6984 | . . . 4 |
4 | infvalti.ex | . . . . 5 | |
5 | 4 | cnvinfex 6983 | . . . 4 |
6 | 3, 5 | supval2ti 6960 | . . 3 |
7 | vex 2729 | . . . . . . . . 9 | |
8 | vex 2729 | . . . . . . . . 9 | |
9 | 7, 8 | brcnv 4787 | . . . . . . . 8 |
10 | 9 | a1i 9 | . . . . . . 7 |
11 | 10 | notbid 657 | . . . . . 6 |
12 | 11 | ralbidv 2466 | . . . . 5 |
13 | 8, 7 | brcnv 4787 | . . . . . . . 8 |
14 | 13 | a1i 9 | . . . . . . 7 |
15 | vex 2729 | . . . . . . . . . 10 | |
16 | 8, 15 | brcnv 4787 | . . . . . . . . 9 |
17 | 16 | a1i 9 | . . . . . . . 8 |
18 | 17 | rexbidv 2467 | . . . . . . 7 |
19 | 14, 18 | imbi12d 233 | . . . . . 6 |
20 | 19 | ralbidv 2466 | . . . . 5 |
21 | 12, 20 | anbi12d 465 | . . . 4 |
22 | 21 | riotabidv 5800 | . . 3 |
23 | 6, 22 | eqtrd 2198 | . 2 |
24 | 1, 23 | syl5eq 2211 | 1 inf |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wceq 1343 wcel 2136 wral 2444 wrex 2445 class class class wbr 3982 ccnv 4603 crio 5797 csup 6947 infcinf 6948 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-reu 2451 df-rmo 2452 df-rab 2453 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-cnv 4612 df-iota 5153 df-riota 5798 df-sup 6949 df-inf 6950 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |