Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > infvalti | Unicode version |
Description: Alternate expression for the infimum. (Contributed by Jim Kingdon, 17-Dec-2021.) |
Ref | Expression |
---|---|
eqinfti.ti | |
infvalti.ex |
Ref | Expression |
---|---|
infvalti | inf |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-inf 6962 | . 2 inf | |
2 | eqinfti.ti | . . . . 5 | |
3 | 2 | cnvti 6996 | . . . 4 |
4 | infvalti.ex | . . . . 5 | |
5 | 4 | cnvinfex 6995 | . . . 4 |
6 | 3, 5 | supval2ti 6972 | . . 3 |
7 | vex 2733 | . . . . . . . . 9 | |
8 | vex 2733 | . . . . . . . . 9 | |
9 | 7, 8 | brcnv 4794 | . . . . . . . 8 |
10 | 9 | a1i 9 | . . . . . . 7 |
11 | 10 | notbid 662 | . . . . . 6 |
12 | 11 | ralbidv 2470 | . . . . 5 |
13 | 8, 7 | brcnv 4794 | . . . . . . . 8 |
14 | 13 | a1i 9 | . . . . . . 7 |
15 | vex 2733 | . . . . . . . . . 10 | |
16 | 8, 15 | brcnv 4794 | . . . . . . . . 9 |
17 | 16 | a1i 9 | . . . . . . . 8 |
18 | 17 | rexbidv 2471 | . . . . . . 7 |
19 | 14, 18 | imbi12d 233 | . . . . . 6 |
20 | 19 | ralbidv 2470 | . . . . 5 |
21 | 12, 20 | anbi12d 470 | . . . 4 |
22 | 21 | riotabidv 5811 | . . 3 |
23 | 6, 22 | eqtrd 2203 | . 2 |
24 | 1, 23 | eqtrid 2215 | 1 inf |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wceq 1348 wcel 2141 wral 2448 wrex 2449 class class class wbr 3989 ccnv 4610 crio 5808 csup 6959 infcinf 6960 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-cnv 4619 df-iota 5160 df-riota 5809 df-sup 6961 df-inf 6962 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |