ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  infvalti Unicode version

Theorem infvalti 7124
Description: Alternate expression for the infimum. (Contributed by Jim Kingdon, 17-Dec-2021.)
Hypotheses
Ref Expression
eqinfti.ti  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  A ) )  -> 
( u  =  v  <-> 
( -.  u R v  /\  -.  v R u ) ) )
infvalti.ex  |-  ( ph  ->  E. x  e.  A  ( A. y  e.  B  -.  y R x  /\  A. y  e.  A  ( x R y  ->  E. z  e.  B  z R y ) ) )
Assertion
Ref Expression
infvalti  |-  ( ph  -> inf ( B ,  A ,  R )  =  (
iota_ x  e.  A  ( A. y  e.  B  -.  y R x  /\  A. y  e.  A  ( x R y  ->  E. z  e.  B  z R y ) ) ) )
Distinct variable groups:    u, A, v, y, z    ph, u, v    u, R, v, y, z    u, B, v, y, z    x, A   
x, B    x, R    ph, x, y, z, u, v

Proof of Theorem infvalti
StepHypRef Expression
1 df-inf 7087 . 2  |- inf ( B ,  A ,  R
)  =  sup ( B ,  A ,  `' R )
2 eqinfti.ti . . . . 5  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  A ) )  -> 
( u  =  v  <-> 
( -.  u R v  /\  -.  v R u ) ) )
32cnvti 7121 . . . 4  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  A ) )  -> 
( u  =  v  <-> 
( -.  u `' R v  /\  -.  v `' R u ) ) )
4 infvalti.ex . . . . 5  |-  ( ph  ->  E. x  e.  A  ( A. y  e.  B  -.  y R x  /\  A. y  e.  A  ( x R y  ->  E. z  e.  B  z R y ) ) )
54cnvinfex 7120 . . . 4  |-  ( ph  ->  E. x  e.  A  ( A. y  e.  B  -.  x `' R y  /\  A. y  e.  A  ( y `' R x  ->  E. z  e.  B  y `' R z ) ) )
63, 5supval2ti 7097 . . 3  |-  ( ph  ->  sup ( B ,  A ,  `' R
)  =  ( iota_ x  e.  A  ( A. y  e.  B  -.  x `' R y  /\  A. y  e.  A  (
y `' R x  ->  E. z  e.  B  y `' R z ) ) ) )
7 vex 2775 . . . . . . . . 9  |-  x  e. 
_V
8 vex 2775 . . . . . . . . 9  |-  y  e. 
_V
97, 8brcnv 4861 . . . . . . . 8  |-  ( x `' R y  <->  y R x )
109a1i 9 . . . . . . 7  |-  ( ph  ->  ( x `' R
y  <->  y R x ) )
1110notbid 669 . . . . . 6  |-  ( ph  ->  ( -.  x `' R y  <->  -.  y R x ) )
1211ralbidv 2506 . . . . 5  |-  ( ph  ->  ( A. y  e.  B  -.  x `' R y  <->  A. y  e.  B  -.  y R x ) )
138, 7brcnv 4861 . . . . . . . 8  |-  ( y `' R x  <->  x R
y )
1413a1i 9 . . . . . . 7  |-  ( ph  ->  ( y `' R x 
<->  x R y ) )
15 vex 2775 . . . . . . . . . 10  |-  z  e. 
_V
168, 15brcnv 4861 . . . . . . . . 9  |-  ( y `' R z  <->  z R
y )
1716a1i 9 . . . . . . . 8  |-  ( ph  ->  ( y `' R
z  <->  z R y ) )
1817rexbidv 2507 . . . . . . 7  |-  ( ph  ->  ( E. z  e.  B  y `' R
z  <->  E. z  e.  B  z R y ) )
1914, 18imbi12d 234 . . . . . 6  |-  ( ph  ->  ( ( y `' R x  ->  E. z  e.  B  y `' R z )  <->  ( x R y  ->  E. z  e.  B  z R
y ) ) )
2019ralbidv 2506 . . . . 5  |-  ( ph  ->  ( A. y  e.  A  ( y `' R x  ->  E. z  e.  B  y `' R z )  <->  A. y  e.  A  ( x R y  ->  E. z  e.  B  z R
y ) ) )
2112, 20anbi12d 473 . . . 4  |-  ( ph  ->  ( ( A. y  e.  B  -.  x `' R y  /\  A. y  e.  A  (
y `' R x  ->  E. z  e.  B  y `' R z ) )  <-> 
( A. y  e.  B  -.  y R x  /\  A. y  e.  A  ( x R y  ->  E. z  e.  B  z R
y ) ) ) )
2221riotabidv 5901 . . 3  |-  ( ph  ->  ( iota_ x  e.  A  ( A. y  e.  B  -.  x `' R y  /\  A. y  e.  A  ( y `' R x  ->  E. z  e.  B  y `' R z ) ) )  =  ( iota_ x  e.  A  ( A. y  e.  B  -.  y R x  /\  A. y  e.  A  (
x R y  ->  E. z  e.  B  z R y ) ) ) )
236, 22eqtrd 2238 . 2  |-  ( ph  ->  sup ( B ,  A ,  `' R
)  =  ( iota_ x  e.  A  ( A. y  e.  B  -.  y R x  /\  A. y  e.  A  (
x R y  ->  E. z  e.  B  z R y ) ) ) )
241, 23eqtrid 2250 1  |-  ( ph  -> inf ( B ,  A ,  R )  =  (
iota_ x  e.  A  ( A. y  e.  B  -.  y R x  /\  A. y  e.  A  ( x R y  ->  E. z  e.  B  z R y ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2176   A.wral 2484   E.wrex 2485   class class class wbr 4044   `'ccnv 4674   iota_crio 5898   supcsup 7084  infcinf 7085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-cnv 4683  df-iota 5232  df-riota 5899  df-sup 7086  df-inf 7087
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator