ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqinftid GIF version

Theorem eqinftid 6823
Description: Sufficient condition for an element to be equal to the infimum. (Contributed by Jim Kingdon, 16-Dec-2021.)
Hypotheses
Ref Expression
eqinfti.ti ((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))
eqinftid.2 (𝜑𝐶𝐴)
eqinftid.3 ((𝜑𝑦𝐵) → ¬ 𝑦𝑅𝐶)
eqinftid.4 ((𝜑 ∧ (𝑦𝐴𝐶𝑅𝑦)) → ∃𝑧𝐵 𝑧𝑅𝑦)
Assertion
Ref Expression
eqinftid (𝜑 → inf(𝐵, 𝐴, 𝑅) = 𝐶)
Distinct variable groups:   𝑢,𝐴,𝑣,𝑦,𝑧   𝜑,𝑢,𝑣   𝑢,𝑅,𝑣,𝑦,𝑧   𝑢,𝐵,𝑣,𝑦,𝑧   𝑢,𝐶,𝑣,𝑦,𝑧   𝜑,𝑦
Allowed substitution hint:   𝜑(𝑧)

Proof of Theorem eqinftid
StepHypRef Expression
1 eqinftid.2 . 2 (𝜑𝐶𝐴)
2 eqinftid.3 . . 3 ((𝜑𝑦𝐵) → ¬ 𝑦𝑅𝐶)
32ralrimiva 2464 . 2 (𝜑 → ∀𝑦𝐵 ¬ 𝑦𝑅𝐶)
4 eqinftid.4 . . . 4 ((𝜑 ∧ (𝑦𝐴𝐶𝑅𝑦)) → ∃𝑧𝐵 𝑧𝑅𝑦)
54expr 370 . . 3 ((𝜑𝑦𝐴) → (𝐶𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦))
65ralrimiva 2464 . 2 (𝜑 → ∀𝑦𝐴 (𝐶𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦))
7 eqinfti.ti . . 3 ((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))
87eqinfti 6822 . 2 (𝜑 → ((𝐶𝐴 ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝐶 ∧ ∀𝑦𝐴 (𝐶𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)) → inf(𝐵, 𝐴, 𝑅) = 𝐶))
91, 3, 6, 8mp3and 1286 1 (𝜑 → inf(𝐵, 𝐴, 𝑅) = 𝐶)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104   = wceq 1299  wcel 1448  wral 2375  wrex 2376   class class class wbr 3875  infcinf 6785
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-sep 3986  ax-pow 4038  ax-pr 4069
This theorem depends on definitions:  df-bi 116  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ral 2380  df-rex 2381  df-reu 2382  df-rmo 2383  df-rab 2384  df-v 2643  df-sbc 2863  df-un 3025  df-in 3027  df-ss 3034  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-br 3876  df-opab 3930  df-cnv 4485  df-iota 5024  df-riota 5662  df-sup 6786  df-inf 6787
This theorem is referenced by:  infminti  6829
  Copyright terms: Public domain W3C validator