ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqinftid GIF version

Theorem eqinftid 7033
Description: Sufficient condition for an element to be equal to the infimum. (Contributed by Jim Kingdon, 16-Dec-2021.)
Hypotheses
Ref Expression
eqinfti.ti ((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))
eqinftid.2 (𝜑𝐶𝐴)
eqinftid.3 ((𝜑𝑦𝐵) → ¬ 𝑦𝑅𝐶)
eqinftid.4 ((𝜑 ∧ (𝑦𝐴𝐶𝑅𝑦)) → ∃𝑧𝐵 𝑧𝑅𝑦)
Assertion
Ref Expression
eqinftid (𝜑 → inf(𝐵, 𝐴, 𝑅) = 𝐶)
Distinct variable groups:   𝑢,𝐴,𝑣,𝑦,𝑧   𝜑,𝑢,𝑣   𝑢,𝑅,𝑣,𝑦,𝑧   𝑢,𝐵,𝑣,𝑦,𝑧   𝑢,𝐶,𝑣,𝑦,𝑧   𝜑,𝑦
Allowed substitution hint:   𝜑(𝑧)

Proof of Theorem eqinftid
StepHypRef Expression
1 eqinftid.2 . 2 (𝜑𝐶𝐴)
2 eqinftid.3 . . 3 ((𝜑𝑦𝐵) → ¬ 𝑦𝑅𝐶)
32ralrimiva 2560 . 2 (𝜑 → ∀𝑦𝐵 ¬ 𝑦𝑅𝐶)
4 eqinftid.4 . . . 4 ((𝜑 ∧ (𝑦𝐴𝐶𝑅𝑦)) → ∃𝑧𝐵 𝑧𝑅𝑦)
54expr 375 . . 3 ((𝜑𝑦𝐴) → (𝐶𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦))
65ralrimiva 2560 . 2 (𝜑 → ∀𝑦𝐴 (𝐶𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦))
7 eqinfti.ti . . 3 ((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))
87eqinfti 7032 . 2 (𝜑 → ((𝐶𝐴 ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝐶 ∧ ∀𝑦𝐴 (𝐶𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)) → inf(𝐵, 𝐴, 𝑅) = 𝐶))
91, 3, 6, 8mp3and 1350 1 (𝜑 → inf(𝐵, 𝐴, 𝑅) = 𝐶)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105   = wceq 1363  wcel 2158  wral 2465  wrex 2466   class class class wbr 4015  infcinf 6995
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ral 2470  df-rex 2471  df-reu 2472  df-rmo 2473  df-rab 2474  df-v 2751  df-sbc 2975  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-br 4016  df-opab 4077  df-cnv 4646  df-iota 5190  df-riota 5844  df-sup 6996  df-inf 6997
This theorem is referenced by:  infminti  7039
  Copyright terms: Public domain W3C validator