| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > infminti | Unicode version | ||
| Description: The smallest element of a set is its infimum. Note that the converse is not true; the infimum might not be an element of the set considered. (Contributed by Jim Kingdon, 18-Dec-2021.) |
| Ref | Expression |
|---|---|
| infminti.ti |
|
| infminti.2 |
|
| infminti.3 |
|
| infminti.4 |
|
| Ref | Expression |
|---|---|
| infminti |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | infminti.ti |
. 2
| |
| 2 | infminti.2 |
. 2
| |
| 3 | infminti.4 |
. 2
| |
| 4 | infminti.3 |
. . 3
| |
| 5 | simprr 531 |
. . 3
| |
| 6 | breq1 4085 |
. . . 4
| |
| 7 | 6 | rspcev 2907 |
. . 3
|
| 8 | 4, 5, 7 | syl2an2r 597 |
. 2
|
| 9 | 1, 2, 3, 8 | eqinftid 7184 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-cnv 4726 df-iota 5277 df-riota 5953 df-sup 7147 df-inf 7148 |
| This theorem is referenced by: lbinf 9091 lcmgcdlem 12594 pilem3 15451 inffz 16399 taupi 16400 |
| Copyright terms: Public domain | W3C validator |