ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  infminti Unicode version

Theorem infminti 7086
Description: The smallest element of a set is its infimum. Note that the converse is not true; the infimum might not be an element of the set considered. (Contributed by Jim Kingdon, 18-Dec-2021.)
Hypotheses
Ref Expression
infminti.ti  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  A ) )  -> 
( u  =  v  <-> 
( -.  u R v  /\  -.  v R u ) ) )
infminti.2  |-  ( ph  ->  C  e.  A )
infminti.3  |-  ( ph  ->  C  e.  B )
infminti.4  |-  ( (
ph  /\  y  e.  B )  ->  -.  y R C )
Assertion
Ref Expression
infminti  |-  ( ph  -> inf ( B ,  A ,  R )  =  C )
Distinct variable groups:    u, A, v, y    u, B, v, y    u, C, v, y    u, R, v, y    ph, u, v, y

Proof of Theorem infminti
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 infminti.ti . 2  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  A ) )  -> 
( u  =  v  <-> 
( -.  u R v  /\  -.  v R u ) ) )
2 infminti.2 . 2  |-  ( ph  ->  C  e.  A )
3 infminti.4 . 2  |-  ( (
ph  /\  y  e.  B )  ->  -.  y R C )
4 infminti.3 . . 3  |-  ( ph  ->  C  e.  B )
5 simprr 531 . . 3  |-  ( (
ph  /\  ( y  e.  A  /\  C R y ) )  ->  C R y )
6 breq1 4032 . . . 4  |-  ( z  =  C  ->  (
z R y  <->  C R
y ) )
76rspcev 2864 . . 3  |-  ( ( C  e.  B  /\  C R y )  ->  E. z  e.  B  z R y )
84, 5, 7syl2an2r 595 . 2  |-  ( (
ph  /\  ( y  e.  A  /\  C R y ) )  ->  E. z  e.  B  z R y )
91, 2, 3, 8eqinftid 7080 1  |-  ( ph  -> inf ( B ,  A ,  R )  =  C )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   E.wrex 2473   class class class wbr 4029  infcinf 7042
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-cnv 4667  df-iota 5215  df-riota 5873  df-sup 7043  df-inf 7044
This theorem is referenced by:  lbinf  8967  lcmgcdlem  12215  pilem3  14918  inffz  15562  taupi  15563
  Copyright terms: Public domain W3C validator