| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > eqsstrd | Unicode version | ||
| Description: Substitution of equality into a subclass relationship. (Contributed by NM, 25-Apr-2004.) | 
| Ref | Expression | 
|---|---|
| eqsstrd.1 | 
 | 
| eqsstrd.2 | 
 | 
| Ref | Expression | 
|---|---|
| eqsstrd | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqsstrd.2 | 
. 2
 | |
| 2 | eqsstrd.1 | 
. . 3
 | |
| 3 | 2 | sseq1d 3212 | 
. 2
 | 
| 4 | 1, 3 | mpbird 167 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 | 
| This theorem is referenced by: eqsstrrd 3220 eqsstrdi 3235 tfisi 4623 funresdfunsnss 5765 suppssof1 6153 pw2f1odclem 6895 phplem4dom 6923 fival 7036 fiuni 7044 cardonle 7254 exmidfodomrlemim 7268 frecuzrdgtclt 10513 4sqlem19 12578 ennnfonelemkh 12629 ennnfonelemf1 12635 strfvssn 12700 setscom 12718 imasaddfnlemg 12957 imasaddflemg 12959 reldvdsrsrg 13648 znleval 14209 tgrest 14405 resttopon 14407 rest0 14415 lmtopcnp 14486 metequiv2 14732 xmettx 14746 ellimc3apf 14896 dvfvalap 14917 dvcjbr 14944 dvcj 14945 dvfre 14946 nnsf 15649 | 
| Copyright terms: Public domain | W3C validator |