| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqsstrd | Unicode version | ||
| Description: Substitution of equality into a subclass relationship. (Contributed by NM, 25-Apr-2004.) |
| Ref | Expression |
|---|---|
| eqsstrd.1 |
|
| eqsstrd.2 |
|
| Ref | Expression |
|---|---|
| eqsstrd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqsstrd.2 |
. 2
| |
| 2 | eqsstrd.1 |
. . 3
| |
| 3 | 2 | sseq1d 3222 |
. 2
|
| 4 | 1, 3 | mpbird 167 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-11 1529 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-in 3172 df-ss 3179 |
| This theorem is referenced by: eqsstrrd 3230 eqsstrdi 3245 tfisi 4635 funresdfunsnss 5787 suppssof1 6176 pw2f1odclem 6931 phplem4dom 6959 fival 7072 fiuni 7080 cardonle 7294 exmidfodomrlemim 7309 frecuzrdgtclt 10566 4sqlem19 12732 ennnfonelemkh 12783 ennnfonelemf1 12789 strfvssn 12854 setscom 12872 imasaddfnlemg 13146 imasaddflemg 13148 reldvdsrsrg 13854 znleval 14415 tgrest 14641 resttopon 14643 rest0 14651 lmtopcnp 14722 metequiv2 14968 xmettx 14982 ellimc3apf 15132 dvfvalap 15153 dvcjbr 15180 dvcj 15181 dvfre 15182 nnsf 15942 |
| Copyright terms: Public domain | W3C validator |