| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqsstrd | Unicode version | ||
| Description: Substitution of equality into a subclass relationship. (Contributed by NM, 25-Apr-2004.) |
| Ref | Expression |
|---|---|
| eqsstrd.1 |
|
| eqsstrd.2 |
|
| Ref | Expression |
|---|---|
| eqsstrd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqsstrd.2 |
. 2
| |
| 2 | eqsstrd.1 |
. . 3
| |
| 3 | 2 | sseq1d 3253 |
. 2
|
| 4 | 1, 3 | mpbird 167 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-in 3203 df-ss 3210 |
| This theorem is referenced by: eqsstrrd 3261 eqsstrdi 3276 tfisi 4679 funresdfunsnss 5842 suppssof1 6236 pw2f1odclem 6995 phplem4dom 7023 fival 7137 fiuni 7145 cardonle 7359 exmidfodomrlemim 7379 frecuzrdgtclt 10643 4sqlem19 12932 ennnfonelemkh 12983 ennnfonelemf1 12989 strfvssn 13054 setscom 13072 imasaddfnlemg 13347 imasaddflemg 13349 znleval 14617 tgrest 14843 resttopon 14845 rest0 14853 lmtopcnp 14924 metequiv2 15170 xmettx 15184 ellimc3apf 15334 dvfvalap 15355 dvcjbr 15382 dvcj 15383 dvfre 15384 uhgredgm 15934 upgredgssen 15937 umgredgssen 15938 edgumgren 15940 usgredgssen 15960 nnsf 16371 |
| Copyright terms: Public domain | W3C validator |