ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqsstrd Unicode version

Theorem eqsstrd 3229
Description: Substitution of equality into a subclass relationship. (Contributed by NM, 25-Apr-2004.)
Hypotheses
Ref Expression
eqsstrd.1  |-  ( ph  ->  A  =  B )
eqsstrd.2  |-  ( ph  ->  B  C_  C )
Assertion
Ref Expression
eqsstrd  |-  ( ph  ->  A  C_  C )

Proof of Theorem eqsstrd
StepHypRef Expression
1 eqsstrd.2 . 2  |-  ( ph  ->  B  C_  C )
2 eqsstrd.1 . . 3  |-  ( ph  ->  A  =  B )
32sseq1d 3222 . 2  |-  ( ph  ->  ( A  C_  C  <->  B 
C_  C ) )
41, 3mpbird 167 1  |-  ( ph  ->  A  C_  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    C_ wss 3166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-11 1529  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-in 3172  df-ss 3179
This theorem is referenced by:  eqsstrrd  3230  eqsstrdi  3245  tfisi  4635  funresdfunsnss  5787  suppssof1  6176  pw2f1odclem  6931  phplem4dom  6959  fival  7072  fiuni  7080  cardonle  7294  exmidfodomrlemim  7309  frecuzrdgtclt  10566  4sqlem19  12732  ennnfonelemkh  12783  ennnfonelemf1  12789  strfvssn  12854  setscom  12872  imasaddfnlemg  13146  imasaddflemg  13148  reldvdsrsrg  13854  znleval  14415  tgrest  14641  resttopon  14643  rest0  14651  lmtopcnp  14722  metequiv2  14968  xmettx  14982  ellimc3apf  15132  dvfvalap  15153  dvcjbr  15180  dvcj  15181  dvfre  15182  nnsf  15942
  Copyright terms: Public domain W3C validator