| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqsstrd | Unicode version | ||
| Description: Substitution of equality into a subclass relationship. (Contributed by NM, 25-Apr-2004.) |
| Ref | Expression |
|---|---|
| eqsstrd.1 |
|
| eqsstrd.2 |
|
| Ref | Expression |
|---|---|
| eqsstrd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqsstrd.2 |
. 2
| |
| 2 | eqsstrd.1 |
. . 3
| |
| 3 | 2 | sseq1d 3230 |
. 2
|
| 4 | 1, 3 | mpbird 167 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-in 3180 df-ss 3187 |
| This theorem is referenced by: eqsstrrd 3238 eqsstrdi 3253 tfisi 4653 funresdfunsnss 5810 suppssof1 6199 pw2f1odclem 6956 phplem4dom 6984 fival 7098 fiuni 7106 cardonle 7320 exmidfodomrlemim 7340 frecuzrdgtclt 10603 4sqlem19 12847 ennnfonelemkh 12898 ennnfonelemf1 12904 strfvssn 12969 setscom 12987 imasaddfnlemg 13261 imasaddflemg 13263 reldvdsrsrg 13969 znleval 14530 tgrest 14756 resttopon 14758 rest0 14766 lmtopcnp 14837 metequiv2 15083 xmettx 15097 ellimc3apf 15247 dvfvalap 15268 dvcjbr 15295 dvcj 15296 dvfre 15297 uhgredgm 15842 edgumgren 15846 nnsf 16144 |
| Copyright terms: Public domain | W3C validator |