Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqsstrd | Unicode version |
Description: Substitution of equality into a subclass relationship. (Contributed by NM, 25-Apr-2004.) |
Ref | Expression |
---|---|
eqsstrd.1 | |
eqsstrd.2 |
Ref | Expression |
---|---|
eqsstrd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqsstrd.2 | . 2 | |
2 | eqsstrd.1 | . . 3 | |
3 | 2 | sseq1d 3182 | . 2 |
4 | 1, 3 | mpbird 167 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1353 wss 3127 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-11 1504 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-in 3133 df-ss 3140 |
This theorem is referenced by: eqsstrrd 3190 eqsstrdi 3205 tfisi 4580 funresdfunsnss 5711 suppssof1 6090 phplem4dom 6852 fival 6959 fiuni 6967 cardonle 7176 exmidfodomrlemim 7190 frecuzrdgtclt 10391 ennnfonelemkh 12380 ennnfonelemf1 12386 strfvssn 12451 setscom 12469 tgrest 13249 resttopon 13251 rest0 13259 lmtopcnp 13330 metequiv2 13576 xmettx 13590 ellimc3apf 13709 dvfvalap 13730 dvcjbr 13752 dvcj 13753 dvfre 13754 nnsf 14324 |
Copyright terms: Public domain | W3C validator |