ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqsstrd Unicode version

Theorem eqsstrd 3193
Description: Substitution of equality into a subclass relationship. (Contributed by NM, 25-Apr-2004.)
Hypotheses
Ref Expression
eqsstrd.1  |-  ( ph  ->  A  =  B )
eqsstrd.2  |-  ( ph  ->  B  C_  C )
Assertion
Ref Expression
eqsstrd  |-  ( ph  ->  A  C_  C )

Proof of Theorem eqsstrd
StepHypRef Expression
1 eqsstrd.2 . 2  |-  ( ph  ->  B  C_  C )
2 eqsstrd.1 . . 3  |-  ( ph  ->  A  =  B )
32sseq1d 3186 . 2  |-  ( ph  ->  ( A  C_  C  <->  B 
C_  C ) )
41, 3mpbird 167 1  |-  ( ph  ->  A  C_  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353    C_ wss 3131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-11 1506  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-in 3137  df-ss 3144
This theorem is referenced by:  eqsstrrd  3194  eqsstrdi  3209  tfisi  4588  funresdfunsnss  5721  suppssof1  6102  phplem4dom  6864  fival  6971  fiuni  6979  cardonle  7188  exmidfodomrlemim  7202  frecuzrdgtclt  10423  ennnfonelemkh  12415  ennnfonelemf1  12421  strfvssn  12486  setscom  12504  imasaddfnlemg  12740  imasaddflemg  12742  reldvdsrsrg  13266  tgrest  13754  resttopon  13756  rest0  13764  lmtopcnp  13835  metequiv2  14081  xmettx  14095  ellimc3apf  14214  dvfvalap  14235  dvcjbr  14257  dvcj  14258  dvfre  14259  nnsf  14839
  Copyright terms: Public domain W3C validator