| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqsstrd | Unicode version | ||
| Description: Substitution of equality into a subclass relationship. (Contributed by NM, 25-Apr-2004.) |
| Ref | Expression |
|---|---|
| eqsstrd.1 |
|
| eqsstrd.2 |
|
| Ref | Expression |
|---|---|
| eqsstrd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqsstrd.2 |
. 2
| |
| 2 | eqsstrd.1 |
. . 3
| |
| 3 | 2 | sseq1d 3222 |
. 2
|
| 4 | 1, 3 | mpbird 167 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-11 1529 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-in 3172 df-ss 3179 |
| This theorem is referenced by: eqsstrrd 3230 eqsstrdi 3245 tfisi 4636 funresdfunsnss 5789 suppssof1 6178 pw2f1odclem 6933 phplem4dom 6961 fival 7074 fiuni 7082 cardonle 7296 exmidfodomrlemim 7311 frecuzrdgtclt 10568 4sqlem19 12765 ennnfonelemkh 12816 ennnfonelemf1 12822 strfvssn 12887 setscom 12905 imasaddfnlemg 13179 imasaddflemg 13181 reldvdsrsrg 13887 znleval 14448 tgrest 14674 resttopon 14676 rest0 14684 lmtopcnp 14755 metequiv2 15001 xmettx 15015 ellimc3apf 15165 dvfvalap 15186 dvcjbr 15213 dvcj 15214 dvfre 15215 nnsf 15979 |
| Copyright terms: Public domain | W3C validator |