ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ennnfonelemkh Unicode version

Theorem ennnfonelemkh 12367
Description: Lemma for ennnfone 12380. Because we add zero or one entries for each new index, the length of each sequence is no greater than its index. (Contributed by Jim Kingdon, 19-Jul-2023.)
Hypotheses
Ref Expression
ennnfonelemh.dceq  |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )
ennnfonelemh.f  |-  ( ph  ->  F : om -onto-> A
)
ennnfonelemh.ne  |-  ( ph  ->  A. n  e.  om  E. k  e.  om  A. j  e.  suc  n ( F `  k )  =/=  ( F `  j ) )
ennnfonelemh.g  |-  G  =  ( x  e.  ( A  ^pm  om ) ,  y  e.  om  |->  if ( ( F `  y )  e.  ( F " y ) ,  x ,  ( x  u.  { <. dom  x ,  ( F `
 y ) >. } ) ) )
ennnfonelemh.n  |-  N  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
ennnfonelemh.j  |-  J  =  ( x  e.  NN0  |->  if ( x  =  0 ,  (/) ,  ( `' N `  ( x  -  1 ) ) ) )
ennnfonelemh.h  |-  H  =  seq 0 ( G ,  J )
ennnfonelemkh.p  |-  ( ph  ->  P  e.  NN0 )
Assertion
Ref Expression
ennnfonelemkh  |-  ( ph  ->  dom  ( H `  P )  C_  ( `' N `  P ) )
Distinct variable groups:    A, j, x, y    x, F, y   
j, G    j, H, x, y    j, J    j, N, x, y    ph, j, x, y
Allowed substitution hints:    ph( k, n)    A( k, n)    P( x, y, j, k, n)    F( j, k, n)    G( x, y, k, n)    H( k, n)    J( x, y, k, n)    N( k, n)

Proof of Theorem ennnfonelemkh
Dummy variables  m  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ennnfonelemkh.p . 2  |-  ( ph  ->  P  e.  NN0 )
2 fveq2 5496 . . . . . . 7  |-  ( w  =  0  ->  ( H `  w )  =  ( H ` 
0 ) )
32dmeqd 4813 . . . . . 6  |-  ( w  =  0  ->  dom  ( H `  w )  =  dom  ( H `
 0 ) )
4 fveq2 5496 . . . . . 6  |-  ( w  =  0  ->  ( `' N `  w )  =  ( `' N `  0 ) )
53, 4sseq12d 3178 . . . . 5  |-  ( w  =  0  ->  ( dom  ( H `  w
)  C_  ( `' N `  w )  <->  dom  ( H `  0
)  C_  ( `' N `  0 )
) )
65imbi2d 229 . . . 4  |-  ( w  =  0  ->  (
( ph  ->  dom  ( H `  w )  C_  ( `' N `  w ) )  <->  ( ph  ->  dom  ( H ` 
0 )  C_  ( `' N `  0 ) ) ) )
7 fveq2 5496 . . . . . . 7  |-  ( w  =  m  ->  ( H `  w )  =  ( H `  m ) )
87dmeqd 4813 . . . . . 6  |-  ( w  =  m  ->  dom  ( H `  w )  =  dom  ( H `
 m ) )
9 fveq2 5496 . . . . . 6  |-  ( w  =  m  ->  ( `' N `  w )  =  ( `' N `  m ) )
108, 9sseq12d 3178 . . . . 5  |-  ( w  =  m  ->  ( dom  ( H `  w
)  C_  ( `' N `  w )  <->  dom  ( H `  m
)  C_  ( `' N `  m )
) )
1110imbi2d 229 . . . 4  |-  ( w  =  m  ->  (
( ph  ->  dom  ( H `  w )  C_  ( `' N `  w ) )  <->  ( ph  ->  dom  ( H `  m )  C_  ( `' N `  m ) ) ) )
12 fveq2 5496 . . . . . . 7  |-  ( w  =  ( m  + 
1 )  ->  ( H `  w )  =  ( H `  ( m  +  1
) ) )
1312dmeqd 4813 . . . . . 6  |-  ( w  =  ( m  + 
1 )  ->  dom  ( H `  w )  =  dom  ( H `
 ( m  + 
1 ) ) )
14 fveq2 5496 . . . . . 6  |-  ( w  =  ( m  + 
1 )  ->  ( `' N `  w )  =  ( `' N `  ( m  +  1 ) ) )
1513, 14sseq12d 3178 . . . . 5  |-  ( w  =  ( m  + 
1 )  ->  ( dom  ( H `  w
)  C_  ( `' N `  w )  <->  dom  ( H `  (
m  +  1 ) )  C_  ( `' N `  ( m  +  1 ) ) ) )
1615imbi2d 229 . . . 4  |-  ( w  =  ( m  + 
1 )  ->  (
( ph  ->  dom  ( H `  w )  C_  ( `' N `  w ) )  <->  ( ph  ->  dom  ( H `  ( m  +  1
) )  C_  ( `' N `  ( m  +  1 ) ) ) ) )
17 fveq2 5496 . . . . . . 7  |-  ( w  =  P  ->  ( H `  w )  =  ( H `  P ) )
1817dmeqd 4813 . . . . . 6  |-  ( w  =  P  ->  dom  ( H `  w )  =  dom  ( H `
 P ) )
19 fveq2 5496 . . . . . 6  |-  ( w  =  P  ->  ( `' N `  w )  =  ( `' N `  P ) )
2018, 19sseq12d 3178 . . . . 5  |-  ( w  =  P  ->  ( dom  ( H `  w
)  C_  ( `' N `  w )  <->  dom  ( H `  P
)  C_  ( `' N `  P )
) )
2120imbi2d 229 . . . 4  |-  ( w  =  P  ->  (
( ph  ->  dom  ( H `  w )  C_  ( `' N `  w ) )  <->  ( ph  ->  dom  ( H `  P )  C_  ( `' N `  P ) ) ) )
22 ennnfonelemh.dceq . . . . . . . . 9  |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )
23 ennnfonelemh.f . . . . . . . . 9  |-  ( ph  ->  F : om -onto-> A
)
24 ennnfonelemh.ne . . . . . . . . 9  |-  ( ph  ->  A. n  e.  om  E. k  e.  om  A. j  e.  suc  n ( F `  k )  =/=  ( F `  j ) )
25 ennnfonelemh.g . . . . . . . . 9  |-  G  =  ( x  e.  ( A  ^pm  om ) ,  y  e.  om  |->  if ( ( F `  y )  e.  ( F " y ) ,  x ,  ( x  u.  { <. dom  x ,  ( F `
 y ) >. } ) ) )
26 ennnfonelemh.n . . . . . . . . 9  |-  N  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
27 ennnfonelemh.j . . . . . . . . 9  |-  J  =  ( x  e.  NN0  |->  if ( x  =  0 ,  (/) ,  ( `' N `  ( x  -  1 ) ) ) )
28 ennnfonelemh.h . . . . . . . . 9  |-  H  =  seq 0 ( G ,  J )
2922, 23, 24, 25, 26, 27, 28ennnfonelem0 12360 . . . . . . . 8  |-  ( ph  ->  ( H `  0
)  =  (/) )
3029dmeqd 4813 . . . . . . 7  |-  ( ph  ->  dom  ( H ` 
0 )  =  dom  (/) )
31 dm0 4825 . . . . . . 7  |-  dom  (/)  =  (/)
3230, 31eqtrdi 2219 . . . . . 6  |-  ( ph  ->  dom  ( H ` 
0 )  =  (/) )
33 0ss 3453 . . . . . 6  |-  (/)  C_  ( `' N `  0 )
3432, 33eqsstrdi 3199 . . . . 5  |-  ( ph  ->  dom  ( H ` 
0 )  C_  ( `' N `  0 ) )
3534a1i 9 . . . 4  |-  ( 0  e.  ZZ  ->  ( ph  ->  dom  ( H `  0 )  C_  ( `' N `  0 ) ) )
3626frechashgf1o 10384 . . . . . . . . . . . . . 14  |-  N : om
-1-1-onto-> NN0
37 f1of 5442 . . . . . . . . . . . . . 14  |-  ( N : om -1-1-onto-> NN0  ->  N : om
--> NN0 )
3836, 37mp1i 10 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  m  e.  ( ZZ>= ` 
0 ) )  /\  dom  ( H `  m
)  C_  ( `' N `  m )
)  /\  ( F `  ( `' N `  m ) )  e.  ( F " ( `' N `  m ) ) )  ->  N : om --> NN0 )
3922ad2antrr 485 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  0 )
)  /\  dom  ( H `
 m )  C_  ( `' N `  m ) )  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y
)
4023ad2antrr 485 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  0 )
)  /\  dom  ( H `
 m )  C_  ( `' N `  m ) )  ->  F : om -onto-> A )
4124ad2antrr 485 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  0 )
)  /\  dom  ( H `
 m )  C_  ( `' N `  m ) )  ->  A. n  e.  om  E. k  e. 
om  A. j  e.  suc  n ( F `  k )  =/=  ( F `  j )
)
42 simplr 525 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  0 )
)  /\  dom  ( H `
 m )  C_  ( `' N `  m ) )  ->  m  e.  ( ZZ>= `  0 )
)
43 nn0uz 9521 . . . . . . . . . . . . . . . . 17  |-  NN0  =  ( ZZ>= `  0 )
4442, 43eleqtrrdi 2264 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  0 )
)  /\  dom  ( H `
 m )  C_  ( `' N `  m ) )  ->  m  e.  NN0 )
45 peano2nn0 9175 . . . . . . . . . . . . . . . 16  |-  ( m  e.  NN0  ->  ( m  +  1 )  e. 
NN0 )
4644, 45syl 14 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  0 )
)  /\  dom  ( H `
 m )  C_  ( `' N `  m ) )  ->  ( m  +  1 )  e. 
NN0 )
4739, 40, 41, 25, 26, 27, 28, 46ennnfonelemom 12363 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  0 )
)  /\  dom  ( H `
 m )  C_  ( `' N `  m ) )  ->  dom  ( H `
 ( m  + 
1 ) )  e. 
om )
4847adantr 274 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  m  e.  ( ZZ>= ` 
0 ) )  /\  dom  ( H `  m
)  C_  ( `' N `  m )
)  /\  ( F `  ( `' N `  m ) )  e.  ( F " ( `' N `  m ) ) )  ->  dom  ( H `  ( m  +  1 ) )  e.  om )
4938, 48ffvelrnd 5632 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  m  e.  ( ZZ>= ` 
0 ) )  /\  dom  ( H `  m
)  C_  ( `' N `  m )
)  /\  ( F `  ( `' N `  m ) )  e.  ( F " ( `' N `  m ) ) )  ->  ( N `  dom  ( H `
 ( m  + 
1 ) ) )  e.  NN0 )
5049nn0red 9189 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  m  e.  ( ZZ>= ` 
0 ) )  /\  dom  ( H `  m
)  C_  ( `' N `  m )
)  /\  ( F `  ( `' N `  m ) )  e.  ( F " ( `' N `  m ) ) )  ->  ( N `  dom  ( H `
 ( m  + 
1 ) ) )  e.  RR )
5144nn0red 9189 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  0 )
)  /\  dom  ( H `
 m )  C_  ( `' N `  m ) )  ->  m  e.  RR )
5251adantr 274 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  m  e.  ( ZZ>= ` 
0 ) )  /\  dom  ( H `  m
)  C_  ( `' N `  m )
)  /\  ( F `  ( `' N `  m ) )  e.  ( F " ( `' N `  m ) ) )  ->  m  e.  RR )
53 peano2re 8055 . . . . . . . . . . . 12  |-  ( m  e.  RR  ->  (
m  +  1 )  e.  RR )
5452, 53syl 14 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  m  e.  ( ZZ>= ` 
0 ) )  /\  dom  ( H `  m
)  C_  ( `' N `  m )
)  /\  ( F `  ( `' N `  m ) )  e.  ( F " ( `' N `  m ) ) )  ->  (
m  +  1 )  e.  RR )
5539, 40, 41, 25, 26, 27, 28, 44ennnfonelemp1 12361 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  0 )
)  /\  dom  ( H `
 m )  C_  ( `' N `  m ) )  ->  ( H `  ( m  +  1 ) )  =  if ( ( F `  ( `' N `  m ) )  e.  ( F
" ( `' N `  m ) ) ,  ( H `  m
) ,  ( ( H `  m )  u.  { <. dom  ( H `  m ) ,  ( F `  ( `' N `  m ) ) >. } ) ) )
5655adantr 274 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  m  e.  ( ZZ>= ` 
0 ) )  /\  dom  ( H `  m
)  C_  ( `' N `  m )
)  /\  ( F `  ( `' N `  m ) )  e.  ( F " ( `' N `  m ) ) )  ->  ( H `  ( m  +  1 ) )  =  if ( ( F `  ( `' N `  m ) )  e.  ( F
" ( `' N `  m ) ) ,  ( H `  m
) ,  ( ( H `  m )  u.  { <. dom  ( H `  m ) ,  ( F `  ( `' N `  m ) ) >. } ) ) )
57 simpr 109 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  m  e.  ( ZZ>= ` 
0 ) )  /\  dom  ( H `  m
)  C_  ( `' N `  m )
)  /\  ( F `  ( `' N `  m ) )  e.  ( F " ( `' N `  m ) ) )  ->  ( F `  ( `' N `  m )
)  e.  ( F
" ( `' N `  m ) ) )
5857iftrued 3533 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  m  e.  ( ZZ>= ` 
0 ) )  /\  dom  ( H `  m
)  C_  ( `' N `  m )
)  /\  ( F `  ( `' N `  m ) )  e.  ( F " ( `' N `  m ) ) )  ->  if ( ( F `  ( `' N `  m ) )  e.  ( F
" ( `' N `  m ) ) ,  ( H `  m
) ,  ( ( H `  m )  u.  { <. dom  ( H `  m ) ,  ( F `  ( `' N `  m ) ) >. } ) )  =  ( H `  m ) )
5956, 58eqtrd 2203 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  m  e.  ( ZZ>= ` 
0 ) )  /\  dom  ( H `  m
)  C_  ( `' N `  m )
)  /\  ( F `  ( `' N `  m ) )  e.  ( F " ( `' N `  m ) ) )  ->  ( H `  ( m  +  1 ) )  =  ( H `  m ) )
6059dmeqd 4813 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  m  e.  ( ZZ>= ` 
0 ) )  /\  dom  ( H `  m
)  C_  ( `' N `  m )
)  /\  ( F `  ( `' N `  m ) )  e.  ( F " ( `' N `  m ) ) )  ->  dom  ( H `  ( m  +  1 ) )  =  dom  ( H `
 m ) )
6160fveq2d 5500 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  m  e.  ( ZZ>= ` 
0 ) )  /\  dom  ( H `  m
)  C_  ( `' N `  m )
)  /\  ( F `  ( `' N `  m ) )  e.  ( F " ( `' N `  m ) ) )  ->  ( N `  dom  ( H `
 ( m  + 
1 ) ) )  =  ( N `  dom  ( H `  m
) ) )
62 simpr 109 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  0 )
)  /\  dom  ( H `
 m )  C_  ( `' N `  m ) )  ->  dom  ( H `
 m )  C_  ( `' N `  m ) )
63 0zd 9224 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  0 )
)  /\  dom  ( H `
 m )  C_  ( `' N `  m ) )  ->  0  e.  ZZ )
6439, 40, 41, 25, 26, 27, 28, 44ennnfonelemom 12363 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  0 )
)  /\  dom  ( H `
 m )  C_  ( `' N `  m ) )  ->  dom  ( H `
 m )  e. 
om )
65 f1ocnv 5455 . . . . . . . . . . . . . . . . . . . 20  |-  ( N : om -1-1-onto-> NN0  ->  `' N : NN0
-1-1-onto-> om )
6636, 65ax-mp 5 . . . . . . . . . . . . . . . . . . 19  |-  `' N : NN0
-1-1-onto-> om
67 f1of 5442 . . . . . . . . . . . . . . . . . . 19  |-  ( `' N : NN0 -1-1-onto-> om  ->  `' N : NN0 --> om )
6866, 67mp1i 10 . . . . . . . . . . . . . . . . . 18  |-  ( m  e.  NN0  ->  `' N : NN0 --> om )
69 id 19 . . . . . . . . . . . . . . . . . 18  |-  ( m  e.  NN0  ->  m  e. 
NN0 )
7068, 69ffvelrnd 5632 . . . . . . . . . . . . . . . . 17  |-  ( m  e.  NN0  ->  ( `' N `  m )  e.  om )
7144, 70syl 14 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  0 )
)  /\  dom  ( H `
 m )  C_  ( `' N `  m ) )  ->  ( `' N `  m )  e.  om )
7263, 26, 64, 71frec2uzled 10385 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  0 )
)  /\  dom  ( H `
 m )  C_  ( `' N `  m ) )  ->  ( dom  ( H `  m ) 
C_  ( `' N `  m )  <->  ( N `  dom  ( H `  m ) )  <_ 
( N `  ( `' N `  m ) ) ) )
7362, 72mpbid 146 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  0 )
)  /\  dom  ( H `
 m )  C_  ( `' N `  m ) )  ->  ( N `  dom  ( H `  m ) )  <_ 
( N `  ( `' N `  m ) ) )
74 f1ocnvfv2 5757 . . . . . . . . . . . . . . 15  |-  ( ( N : om -1-1-onto-> NN0  /\  m  e. 
NN0 )  ->  ( N `  ( `' N `  m )
)  =  m )
7536, 44, 74sylancr 412 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  0 )
)  /\  dom  ( H `
 m )  C_  ( `' N `  m ) )  ->  ( N `  ( `' N `  m ) )  =  m )
7673, 75breqtrd 4015 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  0 )
)  /\  dom  ( H `
 m )  C_  ( `' N `  m ) )  ->  ( N `  dom  ( H `  m ) )  <_  m )
7776adantr 274 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  m  e.  ( ZZ>= ` 
0 ) )  /\  dom  ( H `  m
)  C_  ( `' N `  m )
)  /\  ( F `  ( `' N `  m ) )  e.  ( F " ( `' N `  m ) ) )  ->  ( N `  dom  ( H `
 m ) )  <_  m )
7861, 77eqbrtrd 4011 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  m  e.  ( ZZ>= ` 
0 ) )  /\  dom  ( H `  m
)  C_  ( `' N `  m )
)  /\  ( F `  ( `' N `  m ) )  e.  ( F " ( `' N `  m ) ) )  ->  ( N `  dom  ( H `
 ( m  + 
1 ) ) )  <_  m )
7952lep1d 8847 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  m  e.  ( ZZ>= ` 
0 ) )  /\  dom  ( H `  m
)  C_  ( `' N `  m )
)  /\  ( F `  ( `' N `  m ) )  e.  ( F " ( `' N `  m ) ) )  ->  m  <_  ( m  +  1 ) )
8050, 52, 54, 78, 79letrd 8043 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  m  e.  ( ZZ>= ` 
0 ) )  /\  dom  ( H `  m
)  C_  ( `' N `  m )
)  /\  ( F `  ( `' N `  m ) )  e.  ( F " ( `' N `  m ) ) )  ->  ( N `  dom  ( H `
 ( m  + 
1 ) ) )  <_  ( m  + 
1 ) )
81 f1ocnvfv2 5757 . . . . . . . . . . . 12  |-  ( ( N : om -1-1-onto-> NN0  /\  ( m  +  1 )  e. 
NN0 )  ->  ( N `  ( `' N `  ( m  +  1 ) ) )  =  ( m  +  1 ) )
8236, 46, 81sylancr 412 . . . . . . . . . . 11  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  0 )
)  /\  dom  ( H `
 m )  C_  ( `' N `  m ) )  ->  ( N `  ( `' N `  ( m  +  1
) ) )  =  ( m  +  1 ) )
8382adantr 274 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  m  e.  ( ZZ>= ` 
0 ) )  /\  dom  ( H `  m
)  C_  ( `' N `  m )
)  /\  ( F `  ( `' N `  m ) )  e.  ( F " ( `' N `  m ) ) )  ->  ( N `  ( `' N `  ( m  +  1 ) ) )  =  ( m  +  1 ) )
8480, 83breqtrrd 4017 . . . . . . . . 9  |-  ( ( ( ( ph  /\  m  e.  ( ZZ>= ` 
0 ) )  /\  dom  ( H `  m
)  C_  ( `' N `  m )
)  /\  ( F `  ( `' N `  m ) )  e.  ( F " ( `' N `  m ) ) )  ->  ( N `  dom  ( H `
 ( m  + 
1 ) ) )  <_  ( N `  ( `' N `  ( m  +  1 ) ) ) )
8566, 67mp1i 10 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  0 )
)  /\  dom  ( H `
 m )  C_  ( `' N `  m ) )  ->  `' N : NN0 --> om )
8685, 46ffvelrnd 5632 . . . . . . . . . . 11  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  0 )
)  /\  dom  ( H `
 m )  C_  ( `' N `  m ) )  ->  ( `' N `  ( m  +  1 ) )  e.  om )
8763, 26, 47, 86frec2uzled 10385 . . . . . . . . . 10  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  0 )
)  /\  dom  ( H `
 m )  C_  ( `' N `  m ) )  ->  ( dom  ( H `  ( m  +  1 ) ) 
C_  ( `' N `  ( m  +  1 ) )  <->  ( N `  dom  ( H `  ( m  +  1
) ) )  <_ 
( N `  ( `' N `  ( m  +  1 ) ) ) ) )
8887adantr 274 . . . . . . . . 9  |-  ( ( ( ( ph  /\  m  e.  ( ZZ>= ` 
0 ) )  /\  dom  ( H `  m
)  C_  ( `' N `  m )
)  /\  ( F `  ( `' N `  m ) )  e.  ( F " ( `' N `  m ) ) )  ->  ( dom  ( H `  (
m  +  1 ) )  C_  ( `' N `  ( m  +  1 ) )  <-> 
( N `  dom  ( H `  ( m  +  1 ) ) )  <_  ( N `  ( `' N `  ( m  +  1
) ) ) ) )
8984, 88mpbird 166 . . . . . . . 8  |-  ( ( ( ( ph  /\  m  e.  ( ZZ>= ` 
0 ) )  /\  dom  ( H `  m
)  C_  ( `' N `  m )
)  /\  ( F `  ( `' N `  m ) )  e.  ( F " ( `' N `  m ) ) )  ->  dom  ( H `  ( m  +  1 ) ) 
C_  ( `' N `  ( m  +  1 ) ) )
9055adantr 274 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  m  e.  ( ZZ>= ` 
0 ) )  /\  dom  ( H `  m
)  C_  ( `' N `  m )
)  /\  -.  ( F `  ( `' N `  m )
)  e.  ( F
" ( `' N `  m ) ) )  ->  ( H `  ( m  +  1
) )  =  if ( ( F `  ( `' N `  m ) )  e.  ( F
" ( `' N `  m ) ) ,  ( H `  m
) ,  ( ( H `  m )  u.  { <. dom  ( H `  m ) ,  ( F `  ( `' N `  m ) ) >. } ) ) )
91 simpr 109 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  m  e.  ( ZZ>= ` 
0 ) )  /\  dom  ( H `  m
)  C_  ( `' N `  m )
)  /\  -.  ( F `  ( `' N `  m )
)  e.  ( F
" ( `' N `  m ) ) )  ->  -.  ( F `  ( `' N `  m ) )  e.  ( F " ( `' N `  m ) ) )
9291iffalsed 3536 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  m  e.  ( ZZ>= ` 
0 ) )  /\  dom  ( H `  m
)  C_  ( `' N `  m )
)  /\  -.  ( F `  ( `' N `  m )
)  e.  ( F
" ( `' N `  m ) ) )  ->  if ( ( F `  ( `' N `  m ) )  e.  ( F
" ( `' N `  m ) ) ,  ( H `  m
) ,  ( ( H `  m )  u.  { <. dom  ( H `  m ) ,  ( F `  ( `' N `  m ) ) >. } ) )  =  ( ( H `
 m )  u. 
{ <. dom  ( H `  m ) ,  ( F `  ( `' N `  m ) ) >. } ) )
9390, 92eqtrd 2203 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  m  e.  ( ZZ>= ` 
0 ) )  /\  dom  ( H `  m
)  C_  ( `' N `  m )
)  /\  -.  ( F `  ( `' N `  m )
)  e.  ( F
" ( `' N `  m ) ) )  ->  ( H `  ( m  +  1
) )  =  ( ( H `  m
)  u.  { <. dom  ( H `  m
) ,  ( F `
 ( `' N `  m ) ) >. } ) )
9493dmeqd 4813 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  m  e.  ( ZZ>= ` 
0 ) )  /\  dom  ( H `  m
)  C_  ( `' N `  m )
)  /\  -.  ( F `  ( `' N `  m )
)  e.  ( F
" ( `' N `  m ) ) )  ->  dom  ( H `  ( m  +  1 ) )  =  dom  ( ( H `  m )  u.  { <. dom  ( H `  m ) ,  ( F `  ( `' N `  m ) ) >. } ) )
95 dmun 4818 . . . . . . . . . . . . . . . 16  |-  dom  (
( H `  m
)  u.  { <. dom  ( H `  m
) ,  ( F `
 ( `' N `  m ) ) >. } )  =  ( dom  ( H `  m )  u.  dom  {
<. dom  ( H `  m ) ,  ( F `  ( `' N `  m ) ) >. } )
9694, 95eqtrdi 2219 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  m  e.  ( ZZ>= ` 
0 ) )  /\  dom  ( H `  m
)  C_  ( `' N `  m )
)  /\  -.  ( F `  ( `' N `  m )
)  e.  ( F
" ( `' N `  m ) ) )  ->  dom  ( H `  ( m  +  1 ) )  =  ( dom  ( H `  m )  u.  dom  {
<. dom  ( H `  m ) ,  ( F `  ( `' N `  m ) ) >. } ) )
97 fof 5420 . . . . . . . . . . . . . . . . . . . 20  |-  ( F : om -onto-> A  ->  F : om --> A )
9840, 97syl 14 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  0 )
)  /\  dom  ( H `
 m )  C_  ( `' N `  m ) )  ->  F : om
--> A )
9998, 71ffvelrnd 5632 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  0 )
)  /\  dom  ( H `
 m )  C_  ( `' N `  m ) )  ->  ( F `  ( `' N `  m ) )  e.  A )
10099adantr 274 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  m  e.  ( ZZ>= ` 
0 ) )  /\  dom  ( H `  m
)  C_  ( `' N `  m )
)  /\  -.  ( F `  ( `' N `  m )
)  e.  ( F
" ( `' N `  m ) ) )  ->  ( F `  ( `' N `  m ) )  e.  A )
101 dmsnopg 5082 . . . . . . . . . . . . . . . . 17  |-  ( ( F `  ( `' N `  m ) )  e.  A  ->  dom  { <. dom  ( H `  m ) ,  ( F `  ( `' N `  m ) ) >. }  =  { dom  ( H `  m
) } )
102100, 101syl 14 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  m  e.  ( ZZ>= ` 
0 ) )  /\  dom  ( H `  m
)  C_  ( `' N `  m )
)  /\  -.  ( F `  ( `' N `  m )
)  e.  ( F
" ( `' N `  m ) ) )  ->  dom  { <. dom  ( H `  m ) ,  ( F `  ( `' N `  m ) ) >. }  =  { dom  ( H `  m
) } )
103102uneq2d 3281 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  m  e.  ( ZZ>= ` 
0 ) )  /\  dom  ( H `  m
)  C_  ( `' N `  m )
)  /\  -.  ( F `  ( `' N `  m )
)  e.  ( F
" ( `' N `  m ) ) )  ->  ( dom  ( H `  m )  u.  dom  { <. dom  ( H `  m ) ,  ( F `  ( `' N `  m ) ) >. } )  =  ( dom  ( H `
 m )  u. 
{ dom  ( H `  m ) } ) )
10496, 103eqtrd 2203 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  m  e.  ( ZZ>= ` 
0 ) )  /\  dom  ( H `  m
)  C_  ( `' N `  m )
)  /\  -.  ( F `  ( `' N `  m )
)  e.  ( F
" ( `' N `  m ) ) )  ->  dom  ( H `  ( m  +  1 ) )  =  ( dom  ( H `  m )  u.  { dom  ( H `  m
) } ) )
105 df-suc 4356 . . . . . . . . . . . . . 14  |-  suc  dom  ( H `  m )  =  ( dom  ( H `  m )  u.  { dom  ( H `
 m ) } )
106104, 105eqtr4di 2221 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  m  e.  ( ZZ>= ` 
0 ) )  /\  dom  ( H `  m
)  C_  ( `' N `  m )
)  /\  -.  ( F `  ( `' N `  m )
)  e.  ( F
" ( `' N `  m ) ) )  ->  dom  ( H `  ( m  +  1 ) )  =  suc  dom  ( H `  m
) )
107 simplr 525 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  m  e.  ( ZZ>= ` 
0 ) )  /\  dom  ( H `  m
)  C_  ( `' N `  m )
)  /\  -.  ( F `  ( `' N `  m )
)  e.  ( F
" ( `' N `  m ) ) )  ->  dom  ( H `  m )  C_  ( `' N `  m ) )
10871adantr 274 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  m  e.  ( ZZ>= ` 
0 ) )  /\  dom  ( H `  m
)  C_  ( `' N `  m )
)  /\  -.  ( F `  ( `' N `  m )
)  e.  ( F
" ( `' N `  m ) ) )  ->  ( `' N `  m )  e.  om )
109 nnsucsssuc 6471 . . . . . . . . . . . . . . 15  |-  ( ( dom  ( H `  m )  e.  om  /\  ( `' N `  m )  e.  om )  ->  ( dom  ( H `  m )  C_  ( `' N `  m )  <->  suc  dom  ( H `  m )  C_ 
suc  ( `' N `  m ) ) )
11064, 108, 109syl2an2r 590 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  m  e.  ( ZZ>= ` 
0 ) )  /\  dom  ( H `  m
)  C_  ( `' N `  m )
)  /\  -.  ( F `  ( `' N `  m )
)  e.  ( F
" ( `' N `  m ) ) )  ->  ( dom  ( H `  m )  C_  ( `' N `  m )  <->  suc  dom  ( H `  m )  C_ 
suc  ( `' N `  m ) ) )
111107, 110mpbid 146 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  m  e.  ( ZZ>= ` 
0 ) )  /\  dom  ( H `  m
)  C_  ( `' N `  m )
)  /\  -.  ( F `  ( `' N `  m )
)  e.  ( F
" ( `' N `  m ) ) )  ->  suc  dom  ( H `
 m )  C_  suc  ( `' N `  m ) )
112106, 111eqsstrd 3183 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  m  e.  ( ZZ>= ` 
0 ) )  /\  dom  ( H `  m
)  C_  ( `' N `  m )
)  /\  -.  ( F `  ( `' N `  m )
)  e.  ( F
" ( `' N `  m ) ) )  ->  dom  ( H `  ( m  +  1 ) )  C_  suc  ( `' N `  m ) )
113 0zd 9224 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  m  e.  ( ZZ>= ` 
0 ) )  /\  dom  ( H `  m
)  C_  ( `' N `  m )
)  /\  -.  ( F `  ( `' N `  m )
)  e.  ( F
" ( `' N `  m ) ) )  ->  0  e.  ZZ )
11447adantr 274 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  m  e.  ( ZZ>= ` 
0 ) )  /\  dom  ( H `  m
)  C_  ( `' N `  m )
)  /\  -.  ( F `  ( `' N `  m )
)  e.  ( F
" ( `' N `  m ) ) )  ->  dom  ( H `  ( m  +  1 ) )  e.  om )
115 peano2 4579 . . . . . . . . . . . . . 14  |-  ( ( `' N `  m )  e.  om  ->  suc  ( `' N `  m )  e.  om )
116108, 115syl 14 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  m  e.  ( ZZ>= ` 
0 ) )  /\  dom  ( H `  m
)  C_  ( `' N `  m )
)  /\  -.  ( F `  ( `' N `  m )
)  e.  ( F
" ( `' N `  m ) ) )  ->  suc  ( `' N `  m )  e.  om )
117113, 26, 114, 116frec2uzled 10385 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  m  e.  ( ZZ>= ` 
0 ) )  /\  dom  ( H `  m
)  C_  ( `' N `  m )
)  /\  -.  ( F `  ( `' N `  m )
)  e.  ( F
" ( `' N `  m ) ) )  ->  ( dom  ( H `  ( m  +  1 ) ) 
C_  suc  ( `' N `  m )  <->  ( N `  dom  ( H `  ( m  +  1 ) ) )  <_  ( N `  suc  ( `' N `  m ) ) ) )
118112, 117mpbid 146 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  m  e.  ( ZZ>= ` 
0 ) )  /\  dom  ( H `  m
)  C_  ( `' N `  m )
)  /\  -.  ( F `  ( `' N `  m )
)  e.  ( F
" ( `' N `  m ) ) )  ->  ( N `  dom  ( H `  (
m  +  1 ) ) )  <_  ( N `  suc  ( `' N `  m ) ) )
119113, 26, 108frec2uzsucd 10357 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  m  e.  ( ZZ>= ` 
0 ) )  /\  dom  ( H `  m
)  C_  ( `' N `  m )
)  /\  -.  ( F `  ( `' N `  m )
)  e.  ( F
" ( `' N `  m ) ) )  ->  ( N `  suc  ( `' N `  m ) )  =  ( ( N `  ( `' N `  m ) )  +  1 ) )
12075adantr 274 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  m  e.  ( ZZ>= ` 
0 ) )  /\  dom  ( H `  m
)  C_  ( `' N `  m )
)  /\  -.  ( F `  ( `' N `  m )
)  e.  ( F
" ( `' N `  m ) ) )  ->  ( N `  ( `' N `  m ) )  =  m )
121120oveq1d 5868 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  m  e.  ( ZZ>= ` 
0 ) )  /\  dom  ( H `  m
)  C_  ( `' N `  m )
)  /\  -.  ( F `  ( `' N `  m )
)  e.  ( F
" ( `' N `  m ) ) )  ->  ( ( N `
 ( `' N `  m ) )  +  1 )  =  ( m  +  1 ) )
122119, 121eqtrd 2203 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  m  e.  ( ZZ>= ` 
0 ) )  /\  dom  ( H `  m
)  C_  ( `' N `  m )
)  /\  -.  ( F `  ( `' N `  m )
)  e.  ( F
" ( `' N `  m ) ) )  ->  ( N `  suc  ( `' N `  m ) )  =  ( m  +  1 ) )
123118, 122breqtrd 4015 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  m  e.  ( ZZ>= ` 
0 ) )  /\  dom  ( H `  m
)  C_  ( `' N `  m )
)  /\  -.  ( F `  ( `' N `  m )
)  e.  ( F
" ( `' N `  m ) ) )  ->  ( N `  dom  ( H `  (
m  +  1 ) ) )  <_  (
m  +  1 ) )
12482adantr 274 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  m  e.  ( ZZ>= ` 
0 ) )  /\  dom  ( H `  m
)  C_  ( `' N `  m )
)  /\  -.  ( F `  ( `' N `  m )
)  e.  ( F
" ( `' N `  m ) ) )  ->  ( N `  ( `' N `  ( m  +  1 ) ) )  =  ( m  +  1 ) )
125123, 124breqtrrd 4017 . . . . . . . . 9  |-  ( ( ( ( ph  /\  m  e.  ( ZZ>= ` 
0 ) )  /\  dom  ( H `  m
)  C_  ( `' N `  m )
)  /\  -.  ( F `  ( `' N `  m )
)  e.  ( F
" ( `' N `  m ) ) )  ->  ( N `  dom  ( H `  (
m  +  1 ) ) )  <_  ( N `  ( `' N `  ( m  +  1 ) ) ) )
12686adantr 274 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  m  e.  ( ZZ>= ` 
0 ) )  /\  dom  ( H `  m
)  C_  ( `' N `  m )
)  /\  -.  ( F `  ( `' N `  m )
)  e.  ( F
" ( `' N `  m ) ) )  ->  ( `' N `  ( m  +  1 ) )  e.  om )
127113, 26, 114, 126frec2uzled 10385 . . . . . . . . 9  |-  ( ( ( ( ph  /\  m  e.  ( ZZ>= ` 
0 ) )  /\  dom  ( H `  m
)  C_  ( `' N `  m )
)  /\  -.  ( F `  ( `' N `  m )
)  e.  ( F
" ( `' N `  m ) ) )  ->  ( dom  ( H `  ( m  +  1 ) ) 
C_  ( `' N `  ( m  +  1 ) )  <->  ( N `  dom  ( H `  ( m  +  1
) ) )  <_ 
( N `  ( `' N `  ( m  +  1 ) ) ) ) )
128125, 127mpbird 166 . . . . . . . 8  |-  ( ( ( ( ph  /\  m  e.  ( ZZ>= ` 
0 ) )  /\  dom  ( H `  m
)  C_  ( `' N `  m )
)  /\  -.  ( F `  ( `' N `  m )
)  e.  ( F
" ( `' N `  m ) ) )  ->  dom  ( H `  ( m  +  1 ) )  C_  ( `' N `  ( m  +  1 ) ) )
12939, 40, 71ennnfonelemdc 12354 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  0 )
)  /\  dom  ( H `
 m )  C_  ( `' N `  m ) )  -> DECID  ( F `  ( `' N `  m ) )  e.  ( F
" ( `' N `  m ) ) )
130 exmiddc 831 . . . . . . . . 9  |-  (DECID  ( F `
 ( `' N `  m ) )  e.  ( F " ( `' N `  m ) )  ->  ( ( F `  ( `' N `  m )
)  e.  ( F
" ( `' N `  m ) )  \/ 
-.  ( F `  ( `' N `  m ) )  e.  ( F
" ( `' N `  m ) ) ) )
131129, 130syl 14 . . . . . . . 8  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  0 )
)  /\  dom  ( H `
 m )  C_  ( `' N `  m ) )  ->  ( ( F `  ( `' N `  m )
)  e.  ( F
" ( `' N `  m ) )  \/ 
-.  ( F `  ( `' N `  m ) )  e.  ( F
" ( `' N `  m ) ) ) )
13289, 128, 131mpjaodan 793 . . . . . . 7  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  0 )
)  /\  dom  ( H `
 m )  C_  ( `' N `  m ) )  ->  dom  ( H `
 ( m  + 
1 ) )  C_  ( `' N `  ( m  +  1 ) ) )
133132ex 114 . . . . . 6  |-  ( (
ph  /\  m  e.  ( ZZ>= `  0 )
)  ->  ( dom  ( H `  m ) 
C_  ( `' N `  m )  ->  dom  ( H `  ( m  +  1 ) ) 
C_  ( `' N `  ( m  +  1 ) ) ) )
134133expcom 115 . . . . 5  |-  ( m  e.  ( ZZ>= `  0
)  ->  ( ph  ->  ( dom  ( H `
 m )  C_  ( `' N `  m )  ->  dom  ( H `  ( m  +  1 ) )  C_  ( `' N `  ( m  +  1 ) ) ) ) )
135134a2d 26 . . . 4  |-  ( m  e.  ( ZZ>= `  0
)  ->  ( ( ph  ->  dom  ( H `  m )  C_  ( `' N `  m ) )  ->  ( ph  ->  dom  ( H `  ( m  +  1
) )  C_  ( `' N `  ( m  +  1 ) ) ) ) )
1366, 11, 16, 21, 35, 135uzind4 9547 . . 3  |-  ( P  e.  ( ZZ>= `  0
)  ->  ( ph  ->  dom  ( H `  P )  C_  ( `' N `  P ) ) )
137136, 43eleq2s 2265 . 2  |-  ( P  e.  NN0  ->  ( ph  ->  dom  ( H `  P )  C_  ( `' N `  P ) ) )
1381, 137mpcom 36 1  |-  ( ph  ->  dom  ( H `  P )  C_  ( `' N `  P ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 703  DECID wdc 829    = wceq 1348    e. wcel 2141    =/= wne 2340   A.wral 2448   E.wrex 2449    u. cun 3119    C_ wss 3121   (/)c0 3414   ifcif 3526   {csn 3583   <.cop 3586   class class class wbr 3989    |-> cmpt 4050   suc csuc 4350   omcom 4574   `'ccnv 4610   dom cdm 4611   "cima 4614   -->wf 5194   -onto->wfo 5196   -1-1-onto->wf1o 5197   ` cfv 5198  (class class class)co 5853    e. cmpo 5855  freccfrec 6369    ^pm cpm 6627   RRcr 7773   0cc0 7774   1c1 7775    + caddc 7777    <_ cle 7955    - cmin 8090   NN0cn0 9135   ZZcz 9212   ZZ>=cuz 9487    seqcseq 10401
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-addcom 7874  ax-addass 7876  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-0id 7882  ax-rnegex 7883  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-ltadd 7890
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-pm 6629  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-inn 8879  df-n0 9136  df-z 9213  df-uz 9488  df-seqfrec 10402
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator