ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1o0 Unicode version

Theorem f1o0 5537
Description: One-to-one onto mapping of the empty set. (Contributed by NM, 10-Sep-2004.)
Assertion
Ref Expression
f1o0  |-  (/) : (/) -1-1-onto-> (/)

Proof of Theorem f1o0
StepHypRef Expression
1 eqid 2193 . 2  |-  (/)  =  (/)
2 f1o00 5535 . 2  |-  ( (/) :
(/)
-1-1-onto-> (/)  <->  (
(/)  =  (/)  /\  (/)  =  (/) ) )
31, 1, 2mpbir2an 944 1  |-  (/) : (/) -1-1-onto-> (/)
Colors of variables: wff set class
Syntax hints:    = wceq 1364   (/)c0 3446   -1-1-onto->wf1o 5253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261
This theorem is referenced by:  iso0  5860  ennnfonelemhf1o  12570
  Copyright terms: Public domain W3C validator