ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1o0 Unicode version

Theorem f1o0 5582
Description: One-to-one onto mapping of the empty set. (Contributed by NM, 10-Sep-2004.)
Assertion
Ref Expression
f1o0  |-  (/) : (/) -1-1-onto-> (/)

Proof of Theorem f1o0
StepHypRef Expression
1 eqid 2207 . 2  |-  (/)  =  (/)
2 f1o00 5580 . 2  |-  ( (/) :
(/)
-1-1-onto-> (/)  <->  (
(/)  =  (/)  /\  (/)  =  (/) ) )
31, 1, 2mpbir2an 945 1  |-  (/) : (/) -1-1-onto-> (/)
Colors of variables: wff set class
Syntax hints:    = wceq 1373   (/)c0 3468   -1-1-onto->wf1o 5289
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060  df-opab 4122  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297
This theorem is referenced by:  iso0  5909  ennnfonelemhf1o  12899
  Copyright terms: Public domain W3C validator