Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > f1o00 | Unicode version |
Description: One-to-one onto mapping of the empty set. (Contributed by NM, 15-Apr-1998.) |
Ref | Expression |
---|---|
f1o00 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dff1o4 5440 | . 2 | |
2 | fn0 5307 | . . . . . 6 | |
3 | 2 | biimpi 119 | . . . . 5 |
4 | 3 | adantr 274 | . . . 4 |
5 | cnveq 4778 | . . . . . . . . . 10 | |
6 | cnv0 5007 | . . . . . . . . . 10 | |
7 | 5, 6 | eqtrdi 2215 | . . . . . . . . 9 |
8 | 2, 7 | sylbi 120 | . . . . . . . 8 |
9 | 8 | fneq1d 5278 | . . . . . . 7 |
10 | 9 | biimpa 294 | . . . . . 6 |
11 | fndm 5287 | . . . . . 6 | |
12 | 10, 11 | syl 14 | . . . . 5 |
13 | dm0 4818 | . . . . 5 | |
14 | 12, 13 | eqtr3di 2214 | . . . 4 |
15 | 4, 14 | jca 304 | . . 3 |
16 | 2 | biimpri 132 | . . . . 5 |
17 | 16 | adantr 274 | . . . 4 |
18 | eqid 2165 | . . . . . 6 | |
19 | fn0 5307 | . . . . . 6 | |
20 | 18, 19 | mpbir 145 | . . . . 5 |
21 | 7 | fneq1d 5278 | . . . . . 6 |
22 | fneq2 5277 | . . . . . 6 | |
23 | 21, 22 | sylan9bb 458 | . . . . 5 |
24 | 20, 23 | mpbiri 167 | . . . 4 |
25 | 17, 24 | jca 304 | . . 3 |
26 | 15, 25 | impbii 125 | . 2 |
27 | 1, 26 | bitri 183 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wb 104 wceq 1343 c0 3409 ccnv 4603 cdm 4604 wfn 5183 wf1o 5187 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 |
This theorem is referenced by: fo00 5468 f1o0 5469 en0 6761 |
Copyright terms: Public domain | W3C validator |