| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > f1o00 | Unicode version | ||
| Description: One-to-one onto mapping of the empty set. (Contributed by NM, 15-Apr-1998.) |
| Ref | Expression |
|---|---|
| f1o00 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dff1o4 5552 |
. 2
| |
| 2 | fn0 5415 |
. . . . . 6
| |
| 3 | 2 | biimpi 120 |
. . . . 5
|
| 4 | 3 | adantr 276 |
. . . 4
|
| 5 | cnveq 4870 |
. . . . . . . . . 10
| |
| 6 | cnv0 5105 |
. . . . . . . . . 10
| |
| 7 | 5, 6 | eqtrdi 2256 |
. . . . . . . . 9
|
| 8 | 2, 7 | sylbi 121 |
. . . . . . . 8
|
| 9 | 8 | fneq1d 5383 |
. . . . . . 7
|
| 10 | 9 | biimpa 296 |
. . . . . 6
|
| 11 | fndm 5392 |
. . . . . 6
| |
| 12 | 10, 11 | syl 14 |
. . . . 5
|
| 13 | dm0 4911 |
. . . . 5
| |
| 14 | 12, 13 | eqtr3di 2255 |
. . . 4
|
| 15 | 4, 14 | jca 306 |
. . 3
|
| 16 | 2 | biimpri 133 |
. . . . 5
|
| 17 | 16 | adantr 276 |
. . . 4
|
| 18 | eqid 2207 |
. . . . . 6
| |
| 19 | fn0 5415 |
. . . . . 6
| |
| 20 | 18, 19 | mpbir 146 |
. . . . 5
|
| 21 | 7 | fneq1d 5383 |
. . . . . 6
|
| 22 | fneq2 5382 |
. . . . . 6
| |
| 23 | 21, 22 | sylan9bb 462 |
. . . . 5
|
| 24 | 20, 23 | mpbiri 168 |
. . . 4
|
| 25 | 17, 24 | jca 306 |
. . 3
|
| 26 | 15, 25 | impbii 126 |
. 2
|
| 27 | 1, 26 | bitri 184 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-br 4060 df-opab 4122 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 |
| This theorem is referenced by: fo00 5581 f1o0 5582 en0 6910 |
| Copyright terms: Public domain | W3C validator |