ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1o00 Unicode version

Theorem f1o00 5402
Description: One-to-one onto mapping of the empty set. (Contributed by NM, 15-Apr-1998.)
Assertion
Ref Expression
f1o00  |-  ( F : (/)
-1-1-onto-> A 
<->  ( F  =  (/)  /\  A  =  (/) ) )

Proof of Theorem f1o00
StepHypRef Expression
1 dff1o4 5375 . 2  |-  ( F : (/)
-1-1-onto-> A 
<->  ( F  Fn  (/)  /\  `' F  Fn  A )
)
2 fn0 5242 . . . . . 6  |-  ( F  Fn  (/)  <->  F  =  (/) )
32biimpi 119 . . . . 5  |-  ( F  Fn  (/)  ->  F  =  (/) )
43adantr 274 . . . 4  |-  ( ( F  Fn  (/)  /\  `' F  Fn  A )  ->  F  =  (/) )
5 dm0 4753 . . . . 5  |-  dom  (/)  =  (/)
6 cnveq 4713 . . . . . . . . . 10  |-  ( F  =  (/)  ->  `' F  =  `' (/) )
7 cnv0 4942 . . . . . . . . . 10  |-  `' (/)  =  (/)
86, 7syl6eq 2188 . . . . . . . . 9  |-  ( F  =  (/)  ->  `' F  =  (/) )
92, 8sylbi 120 . . . . . . . 8  |-  ( F  Fn  (/)  ->  `' F  =  (/) )
109fneq1d 5213 . . . . . . 7  |-  ( F  Fn  (/)  ->  ( `' F  Fn  A  <->  (/)  Fn  A
) )
1110biimpa 294 . . . . . 6  |-  ( ( F  Fn  (/)  /\  `' F  Fn  A )  -> 
(/)  Fn  A )
12 fndm 5222 . . . . . 6  |-  ( (/)  Fn  A  ->  dom  (/)  =  A )
1311, 12syl 14 . . . . 5  |-  ( ( F  Fn  (/)  /\  `' F  Fn  A )  ->  dom  (/)  =  A )
145, 13syl5reqr 2187 . . . 4  |-  ( ( F  Fn  (/)  /\  `' F  Fn  A )  ->  A  =  (/) )
154, 14jca 304 . . 3  |-  ( ( F  Fn  (/)  /\  `' F  Fn  A )  ->  ( F  =  (/)  /\  A  =  (/) ) )
162biimpri 132 . . . . 5  |-  ( F  =  (/)  ->  F  Fn  (/) )
1716adantr 274 . . . 4  |-  ( ( F  =  (/)  /\  A  =  (/) )  ->  F  Fn  (/) )
18 eqid 2139 . . . . . 6  |-  (/)  =  (/)
19 fn0 5242 . . . . . 6  |-  ( (/)  Fn  (/) 
<->  (/)  =  (/) )
2018, 19mpbir 145 . . . . 5  |-  (/)  Fn  (/)
218fneq1d 5213 . . . . . 6  |-  ( F  =  (/)  ->  ( `' F  Fn  A  <->  (/)  Fn  A
) )
22 fneq2 5212 . . . . . 6  |-  ( A  =  (/)  ->  ( (/)  Fn  A  <->  (/)  Fn  (/) ) )
2321, 22sylan9bb 457 . . . . 5  |-  ( ( F  =  (/)  /\  A  =  (/) )  ->  ( `' F  Fn  A  <->  (/)  Fn  (/) ) )
2420, 23mpbiri 167 . . . 4  |-  ( ( F  =  (/)  /\  A  =  (/) )  ->  `' F  Fn  A )
2517, 24jca 304 . . 3  |-  ( ( F  =  (/)  /\  A  =  (/) )  ->  ( F  Fn  (/)  /\  `' F  Fn  A )
)
2615, 25impbii 125 . 2  |-  ( ( F  Fn  (/)  /\  `' F  Fn  A )  <->  ( F  =  (/)  /\  A  =  (/) ) )
271, 26bitri 183 1  |-  ( F : (/)
-1-1-onto-> A 
<->  ( F  =  (/)  /\  A  =  (/) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    = wceq 1331   (/)c0 3363   `'ccnv 4538   dom cdm 4539    Fn wfn 5118   -1-1-onto->wf1o 5122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-br 3930  df-opab 3990  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130
This theorem is referenced by:  fo00  5403  f1o0  5404  en0  6689
  Copyright terms: Public domain W3C validator