ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1o00 Unicode version

Theorem f1o00 5498
Description: One-to-one onto mapping of the empty set. (Contributed by NM, 15-Apr-1998.)
Assertion
Ref Expression
f1o00  |-  ( F : (/)
-1-1-onto-> A 
<->  ( F  =  (/)  /\  A  =  (/) ) )

Proof of Theorem f1o00
StepHypRef Expression
1 dff1o4 5471 . 2  |-  ( F : (/)
-1-1-onto-> A 
<->  ( F  Fn  (/)  /\  `' F  Fn  A )
)
2 fn0 5337 . . . . . 6  |-  ( F  Fn  (/)  <->  F  =  (/) )
32biimpi 120 . . . . 5  |-  ( F  Fn  (/)  ->  F  =  (/) )
43adantr 276 . . . 4  |-  ( ( F  Fn  (/)  /\  `' F  Fn  A )  ->  F  =  (/) )
5 cnveq 4803 . . . . . . . . . 10  |-  ( F  =  (/)  ->  `' F  =  `' (/) )
6 cnv0 5034 . . . . . . . . . 10  |-  `' (/)  =  (/)
75, 6eqtrdi 2226 . . . . . . . . 9  |-  ( F  =  (/)  ->  `' F  =  (/) )
82, 7sylbi 121 . . . . . . . 8  |-  ( F  Fn  (/)  ->  `' F  =  (/) )
98fneq1d 5308 . . . . . . 7  |-  ( F  Fn  (/)  ->  ( `' F  Fn  A  <->  (/)  Fn  A
) )
109biimpa 296 . . . . . 6  |-  ( ( F  Fn  (/)  /\  `' F  Fn  A )  -> 
(/)  Fn  A )
11 fndm 5317 . . . . . 6  |-  ( (/)  Fn  A  ->  dom  (/)  =  A )
1210, 11syl 14 . . . . 5  |-  ( ( F  Fn  (/)  /\  `' F  Fn  A )  ->  dom  (/)  =  A )
13 dm0 4843 . . . . 5  |-  dom  (/)  =  (/)
1412, 13eqtr3di 2225 . . . 4  |-  ( ( F  Fn  (/)  /\  `' F  Fn  A )  ->  A  =  (/) )
154, 14jca 306 . . 3  |-  ( ( F  Fn  (/)  /\  `' F  Fn  A )  ->  ( F  =  (/)  /\  A  =  (/) ) )
162biimpri 133 . . . . 5  |-  ( F  =  (/)  ->  F  Fn  (/) )
1716adantr 276 . . . 4  |-  ( ( F  =  (/)  /\  A  =  (/) )  ->  F  Fn  (/) )
18 eqid 2177 . . . . . 6  |-  (/)  =  (/)
19 fn0 5337 . . . . . 6  |-  ( (/)  Fn  (/) 
<->  (/)  =  (/) )
2018, 19mpbir 146 . . . . 5  |-  (/)  Fn  (/)
217fneq1d 5308 . . . . . 6  |-  ( F  =  (/)  ->  ( `' F  Fn  A  <->  (/)  Fn  A
) )
22 fneq2 5307 . . . . . 6  |-  ( A  =  (/)  ->  ( (/)  Fn  A  <->  (/)  Fn  (/) ) )
2321, 22sylan9bb 462 . . . . 5  |-  ( ( F  =  (/)  /\  A  =  (/) )  ->  ( `' F  Fn  A  <->  (/)  Fn  (/) ) )
2420, 23mpbiri 168 . . . 4  |-  ( ( F  =  (/)  /\  A  =  (/) )  ->  `' F  Fn  A )
2517, 24jca 306 . . 3  |-  ( ( F  =  (/)  /\  A  =  (/) )  ->  ( F  Fn  (/)  /\  `' F  Fn  A )
)
2615, 25impbii 126 . 2  |-  ( ( F  Fn  (/)  /\  `' F  Fn  A )  <->  ( F  =  (/)  /\  A  =  (/) ) )
271, 26bitri 184 1  |-  ( F : (/)
-1-1-onto-> A 
<->  ( F  =  (/)  /\  A  =  (/) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1353   (/)c0 3424   `'ccnv 4627   dom cdm 4628    Fn wfn 5213   -1-1-onto->wf1o 5217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-br 4006  df-opab 4067  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225
This theorem is referenced by:  fo00  5499  f1o0  5500  en0  6797
  Copyright terms: Public domain W3C validator