Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > f1o00 | Unicode version |
Description: One-to-one onto mapping of the empty set. (Contributed by NM, 15-Apr-1998.) |
Ref | Expression |
---|---|
f1o00 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dff1o4 5461 | . 2 | |
2 | fn0 5327 | . . . . . 6 | |
3 | 2 | biimpi 120 | . . . . 5 |
4 | 3 | adantr 276 | . . . 4 |
5 | cnveq 4794 | . . . . . . . . . 10 | |
6 | cnv0 5024 | . . . . . . . . . 10 | |
7 | 5, 6 | eqtrdi 2224 | . . . . . . . . 9 |
8 | 2, 7 | sylbi 121 | . . . . . . . 8 |
9 | 8 | fneq1d 5298 | . . . . . . 7 |
10 | 9 | biimpa 296 | . . . . . 6 |
11 | fndm 5307 | . . . . . 6 | |
12 | 10, 11 | syl 14 | . . . . 5 |
13 | dm0 4834 | . . . . 5 | |
14 | 12, 13 | eqtr3di 2223 | . . . 4 |
15 | 4, 14 | jca 306 | . . 3 |
16 | 2 | biimpri 133 | . . . . 5 |
17 | 16 | adantr 276 | . . . 4 |
18 | eqid 2175 | . . . . . 6 | |
19 | fn0 5327 | . . . . . 6 | |
20 | 18, 19 | mpbir 146 | . . . . 5 |
21 | 7 | fneq1d 5298 | . . . . . 6 |
22 | fneq2 5297 | . . . . . 6 | |
23 | 21, 22 | sylan9bb 462 | . . . . 5 |
24 | 20, 23 | mpbiri 168 | . . . 4 |
25 | 17, 24 | jca 306 | . . 3 |
26 | 15, 25 | impbii 126 | . 2 |
27 | 1, 26 | bitri 184 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 104 wb 105 wceq 1353 c0 3420 ccnv 4619 cdm 4620 wfn 5203 wf1o 5207 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-nul 4124 ax-pow 4169 ax-pr 4203 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-v 2737 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-nul 3421 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-br 3999 df-opab 4060 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-fun 5210 df-fn 5211 df-f 5212 df-f1 5213 df-fo 5214 df-f1o 5215 |
This theorem is referenced by: fo00 5489 f1o0 5490 en0 6785 |
Copyright terms: Public domain | W3C validator |