| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > f1o00 | Unicode version | ||
| Description: One-to-one onto mapping of the empty set. (Contributed by NM, 15-Apr-1998.) |
| Ref | Expression |
|---|---|
| f1o00 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dff1o4 5580 |
. 2
| |
| 2 | fn0 5443 |
. . . . . 6
| |
| 3 | 2 | biimpi 120 |
. . . . 5
|
| 4 | 3 | adantr 276 |
. . . 4
|
| 5 | cnveq 4896 |
. . . . . . . . . 10
| |
| 6 | cnv0 5132 |
. . . . . . . . . 10
| |
| 7 | 5, 6 | eqtrdi 2278 |
. . . . . . . . 9
|
| 8 | 2, 7 | sylbi 121 |
. . . . . . . 8
|
| 9 | 8 | fneq1d 5411 |
. . . . . . 7
|
| 10 | 9 | biimpa 296 |
. . . . . 6
|
| 11 | fndm 5420 |
. . . . . 6
| |
| 12 | 10, 11 | syl 14 |
. . . . 5
|
| 13 | dm0 4937 |
. . . . 5
| |
| 14 | 12, 13 | eqtr3di 2277 |
. . . 4
|
| 15 | 4, 14 | jca 306 |
. . 3
|
| 16 | 2 | biimpri 133 |
. . . . 5
|
| 17 | 16 | adantr 276 |
. . . 4
|
| 18 | eqid 2229 |
. . . . . 6
| |
| 19 | fn0 5443 |
. . . . . 6
| |
| 20 | 18, 19 | mpbir 146 |
. . . . 5
|
| 21 | 7 | fneq1d 5411 |
. . . . . 6
|
| 22 | fneq2 5410 |
. . . . . 6
| |
| 23 | 21, 22 | sylan9bb 462 |
. . . . 5
|
| 24 | 20, 23 | mpbiri 168 |
. . . 4
|
| 25 | 17, 24 | jca 306 |
. . 3
|
| 26 | 15, 25 | impbii 126 |
. 2
|
| 27 | 1, 26 | bitri 184 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4084 df-opab 4146 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 |
| This theorem is referenced by: fo00 5609 f1o0 5610 en0 6947 |
| Copyright terms: Public domain | W3C validator |