ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1o00 Unicode version

Theorem f1o00 5467
Description: One-to-one onto mapping of the empty set. (Contributed by NM, 15-Apr-1998.)
Assertion
Ref Expression
f1o00  |-  ( F : (/)
-1-1-onto-> A 
<->  ( F  =  (/)  /\  A  =  (/) ) )

Proof of Theorem f1o00
StepHypRef Expression
1 dff1o4 5440 . 2  |-  ( F : (/)
-1-1-onto-> A 
<->  ( F  Fn  (/)  /\  `' F  Fn  A )
)
2 fn0 5307 . . . . . 6  |-  ( F  Fn  (/)  <->  F  =  (/) )
32biimpi 119 . . . . 5  |-  ( F  Fn  (/)  ->  F  =  (/) )
43adantr 274 . . . 4  |-  ( ( F  Fn  (/)  /\  `' F  Fn  A )  ->  F  =  (/) )
5 cnveq 4778 . . . . . . . . . 10  |-  ( F  =  (/)  ->  `' F  =  `' (/) )
6 cnv0 5007 . . . . . . . . . 10  |-  `' (/)  =  (/)
75, 6eqtrdi 2215 . . . . . . . . 9  |-  ( F  =  (/)  ->  `' F  =  (/) )
82, 7sylbi 120 . . . . . . . 8  |-  ( F  Fn  (/)  ->  `' F  =  (/) )
98fneq1d 5278 . . . . . . 7  |-  ( F  Fn  (/)  ->  ( `' F  Fn  A  <->  (/)  Fn  A
) )
109biimpa 294 . . . . . 6  |-  ( ( F  Fn  (/)  /\  `' F  Fn  A )  -> 
(/)  Fn  A )
11 fndm 5287 . . . . . 6  |-  ( (/)  Fn  A  ->  dom  (/)  =  A )
1210, 11syl 14 . . . . 5  |-  ( ( F  Fn  (/)  /\  `' F  Fn  A )  ->  dom  (/)  =  A )
13 dm0 4818 . . . . 5  |-  dom  (/)  =  (/)
1412, 13eqtr3di 2214 . . . 4  |-  ( ( F  Fn  (/)  /\  `' F  Fn  A )  ->  A  =  (/) )
154, 14jca 304 . . 3  |-  ( ( F  Fn  (/)  /\  `' F  Fn  A )  ->  ( F  =  (/)  /\  A  =  (/) ) )
162biimpri 132 . . . . 5  |-  ( F  =  (/)  ->  F  Fn  (/) )
1716adantr 274 . . . 4  |-  ( ( F  =  (/)  /\  A  =  (/) )  ->  F  Fn  (/) )
18 eqid 2165 . . . . . 6  |-  (/)  =  (/)
19 fn0 5307 . . . . . 6  |-  ( (/)  Fn  (/) 
<->  (/)  =  (/) )
2018, 19mpbir 145 . . . . 5  |-  (/)  Fn  (/)
217fneq1d 5278 . . . . . 6  |-  ( F  =  (/)  ->  ( `' F  Fn  A  <->  (/)  Fn  A
) )
22 fneq2 5277 . . . . . 6  |-  ( A  =  (/)  ->  ( (/)  Fn  A  <->  (/)  Fn  (/) ) )
2321, 22sylan9bb 458 . . . . 5  |-  ( ( F  =  (/)  /\  A  =  (/) )  ->  ( `' F  Fn  A  <->  (/)  Fn  (/) ) )
2420, 23mpbiri 167 . . . 4  |-  ( ( F  =  (/)  /\  A  =  (/) )  ->  `' F  Fn  A )
2517, 24jca 304 . . 3  |-  ( ( F  =  (/)  /\  A  =  (/) )  ->  ( F  Fn  (/)  /\  `' F  Fn  A )
)
2615, 25impbii 125 . 2  |-  ( ( F  Fn  (/)  /\  `' F  Fn  A )  <->  ( F  =  (/)  /\  A  =  (/) ) )
271, 26bitri 183 1  |-  ( F : (/)
-1-1-onto-> A 
<->  ( F  =  (/)  /\  A  =  (/) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    = wceq 1343   (/)c0 3409   `'ccnv 4603   dom cdm 4604    Fn wfn 5183   -1-1-onto->wf1o 5187
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195
This theorem is referenced by:  fo00  5468  f1o0  5469  en0  6761
  Copyright terms: Public domain W3C validator