| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > f1o00 | Unicode version | ||
| Description: One-to-one onto mapping of the empty set. (Contributed by NM, 15-Apr-1998.) |
| Ref | Expression |
|---|---|
| f1o00 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dff1o4 5515 |
. 2
| |
| 2 | fn0 5380 |
. . . . . 6
| |
| 3 | 2 | biimpi 120 |
. . . . 5
|
| 4 | 3 | adantr 276 |
. . . 4
|
| 5 | cnveq 4841 |
. . . . . . . . . 10
| |
| 6 | cnv0 5074 |
. . . . . . . . . 10
| |
| 7 | 5, 6 | eqtrdi 2245 |
. . . . . . . . 9
|
| 8 | 2, 7 | sylbi 121 |
. . . . . . . 8
|
| 9 | 8 | fneq1d 5349 |
. . . . . . 7
|
| 10 | 9 | biimpa 296 |
. . . . . 6
|
| 11 | fndm 5358 |
. . . . . 6
| |
| 12 | 10, 11 | syl 14 |
. . . . 5
|
| 13 | dm0 4881 |
. . . . 5
| |
| 14 | 12, 13 | eqtr3di 2244 |
. . . 4
|
| 15 | 4, 14 | jca 306 |
. . 3
|
| 16 | 2 | biimpri 133 |
. . . . 5
|
| 17 | 16 | adantr 276 |
. . . 4
|
| 18 | eqid 2196 |
. . . . . 6
| |
| 19 | fn0 5380 |
. . . . . 6
| |
| 20 | 18, 19 | mpbir 146 |
. . . . 5
|
| 21 | 7 | fneq1d 5349 |
. . . . . 6
|
| 22 | fneq2 5348 |
. . . . . 6
| |
| 23 | 21, 22 | sylan9bb 462 |
. . . . 5
|
| 24 | 20, 23 | mpbiri 168 |
. . . 4
|
| 25 | 17, 24 | jca 306 |
. . 3
|
| 26 | 15, 25 | impbii 126 |
. 2
|
| 27 | 1, 26 | bitri 184 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-br 4035 df-opab 4096 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 |
| This theorem is referenced by: fo00 5543 f1o0 5544 en0 6863 |
| Copyright terms: Public domain | W3C validator |