ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1o00 Unicode version

Theorem f1o00 5539
Description: One-to-one onto mapping of the empty set. (Contributed by NM, 15-Apr-1998.)
Assertion
Ref Expression
f1o00  |-  ( F : (/)
-1-1-onto-> A 
<->  ( F  =  (/)  /\  A  =  (/) ) )

Proof of Theorem f1o00
StepHypRef Expression
1 dff1o4 5512 . 2  |-  ( F : (/)
-1-1-onto-> A 
<->  ( F  Fn  (/)  /\  `' F  Fn  A )
)
2 fn0 5377 . . . . . 6  |-  ( F  Fn  (/)  <->  F  =  (/) )
32biimpi 120 . . . . 5  |-  ( F  Fn  (/)  ->  F  =  (/) )
43adantr 276 . . . 4  |-  ( ( F  Fn  (/)  /\  `' F  Fn  A )  ->  F  =  (/) )
5 cnveq 4840 . . . . . . . . . 10  |-  ( F  =  (/)  ->  `' F  =  `' (/) )
6 cnv0 5073 . . . . . . . . . 10  |-  `' (/)  =  (/)
75, 6eqtrdi 2245 . . . . . . . . 9  |-  ( F  =  (/)  ->  `' F  =  (/) )
82, 7sylbi 121 . . . . . . . 8  |-  ( F  Fn  (/)  ->  `' F  =  (/) )
98fneq1d 5348 . . . . . . 7  |-  ( F  Fn  (/)  ->  ( `' F  Fn  A  <->  (/)  Fn  A
) )
109biimpa 296 . . . . . 6  |-  ( ( F  Fn  (/)  /\  `' F  Fn  A )  -> 
(/)  Fn  A )
11 fndm 5357 . . . . . 6  |-  ( (/)  Fn  A  ->  dom  (/)  =  A )
1210, 11syl 14 . . . . 5  |-  ( ( F  Fn  (/)  /\  `' F  Fn  A )  ->  dom  (/)  =  A )
13 dm0 4880 . . . . 5  |-  dom  (/)  =  (/)
1412, 13eqtr3di 2244 . . . 4  |-  ( ( F  Fn  (/)  /\  `' F  Fn  A )  ->  A  =  (/) )
154, 14jca 306 . . 3  |-  ( ( F  Fn  (/)  /\  `' F  Fn  A )  ->  ( F  =  (/)  /\  A  =  (/) ) )
162biimpri 133 . . . . 5  |-  ( F  =  (/)  ->  F  Fn  (/) )
1716adantr 276 . . . 4  |-  ( ( F  =  (/)  /\  A  =  (/) )  ->  F  Fn  (/) )
18 eqid 2196 . . . . . 6  |-  (/)  =  (/)
19 fn0 5377 . . . . . 6  |-  ( (/)  Fn  (/) 
<->  (/)  =  (/) )
2018, 19mpbir 146 . . . . 5  |-  (/)  Fn  (/)
217fneq1d 5348 . . . . . 6  |-  ( F  =  (/)  ->  ( `' F  Fn  A  <->  (/)  Fn  A
) )
22 fneq2 5347 . . . . . 6  |-  ( A  =  (/)  ->  ( (/)  Fn  A  <->  (/)  Fn  (/) ) )
2321, 22sylan9bb 462 . . . . 5  |-  ( ( F  =  (/)  /\  A  =  (/) )  ->  ( `' F  Fn  A  <->  (/)  Fn  (/) ) )
2420, 23mpbiri 168 . . . 4  |-  ( ( F  =  (/)  /\  A  =  (/) )  ->  `' F  Fn  A )
2517, 24jca 306 . . 3  |-  ( ( F  =  (/)  /\  A  =  (/) )  ->  ( F  Fn  (/)  /\  `' F  Fn  A )
)
2615, 25impbii 126 . 2  |-  ( ( F  Fn  (/)  /\  `' F  Fn  A )  <->  ( F  =  (/)  /\  A  =  (/) ) )
271, 26bitri 184 1  |-  ( F : (/)
-1-1-onto-> A 
<->  ( F  =  (/)  /\  A  =  (/) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1364   (/)c0 3450   `'ccnv 4662   dom cdm 4663    Fn wfn 5253   -1-1-onto->wf1o 5257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034  df-opab 4095  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265
This theorem is referenced by:  fo00  5540  f1o0  5541  en0  6854
  Copyright terms: Public domain W3C validator