ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1o00 Unicode version

Theorem f1o00 5488
Description: One-to-one onto mapping of the empty set. (Contributed by NM, 15-Apr-1998.)
Assertion
Ref Expression
f1o00  |-  ( F : (/)
-1-1-onto-> A 
<->  ( F  =  (/)  /\  A  =  (/) ) )

Proof of Theorem f1o00
StepHypRef Expression
1 dff1o4 5461 . 2  |-  ( F : (/)
-1-1-onto-> A 
<->  ( F  Fn  (/)  /\  `' F  Fn  A )
)
2 fn0 5327 . . . . . 6  |-  ( F  Fn  (/)  <->  F  =  (/) )
32biimpi 120 . . . . 5  |-  ( F  Fn  (/)  ->  F  =  (/) )
43adantr 276 . . . 4  |-  ( ( F  Fn  (/)  /\  `' F  Fn  A )  ->  F  =  (/) )
5 cnveq 4794 . . . . . . . . . 10  |-  ( F  =  (/)  ->  `' F  =  `' (/) )
6 cnv0 5024 . . . . . . . . . 10  |-  `' (/)  =  (/)
75, 6eqtrdi 2224 . . . . . . . . 9  |-  ( F  =  (/)  ->  `' F  =  (/) )
82, 7sylbi 121 . . . . . . . 8  |-  ( F  Fn  (/)  ->  `' F  =  (/) )
98fneq1d 5298 . . . . . . 7  |-  ( F  Fn  (/)  ->  ( `' F  Fn  A  <->  (/)  Fn  A
) )
109biimpa 296 . . . . . 6  |-  ( ( F  Fn  (/)  /\  `' F  Fn  A )  -> 
(/)  Fn  A )
11 fndm 5307 . . . . . 6  |-  ( (/)  Fn  A  ->  dom  (/)  =  A )
1210, 11syl 14 . . . . 5  |-  ( ( F  Fn  (/)  /\  `' F  Fn  A )  ->  dom  (/)  =  A )
13 dm0 4834 . . . . 5  |-  dom  (/)  =  (/)
1412, 13eqtr3di 2223 . . . 4  |-  ( ( F  Fn  (/)  /\  `' F  Fn  A )  ->  A  =  (/) )
154, 14jca 306 . . 3  |-  ( ( F  Fn  (/)  /\  `' F  Fn  A )  ->  ( F  =  (/)  /\  A  =  (/) ) )
162biimpri 133 . . . . 5  |-  ( F  =  (/)  ->  F  Fn  (/) )
1716adantr 276 . . . 4  |-  ( ( F  =  (/)  /\  A  =  (/) )  ->  F  Fn  (/) )
18 eqid 2175 . . . . . 6  |-  (/)  =  (/)
19 fn0 5327 . . . . . 6  |-  ( (/)  Fn  (/) 
<->  (/)  =  (/) )
2018, 19mpbir 146 . . . . 5  |-  (/)  Fn  (/)
217fneq1d 5298 . . . . . 6  |-  ( F  =  (/)  ->  ( `' F  Fn  A  <->  (/)  Fn  A
) )
22 fneq2 5297 . . . . . 6  |-  ( A  =  (/)  ->  ( (/)  Fn  A  <->  (/)  Fn  (/) ) )
2321, 22sylan9bb 462 . . . . 5  |-  ( ( F  =  (/)  /\  A  =  (/) )  ->  ( `' F  Fn  A  <->  (/)  Fn  (/) ) )
2420, 23mpbiri 168 . . . 4  |-  ( ( F  =  (/)  /\  A  =  (/) )  ->  `' F  Fn  A )
2517, 24jca 306 . . 3  |-  ( ( F  =  (/)  /\  A  =  (/) )  ->  ( F  Fn  (/)  /\  `' F  Fn  A )
)
2615, 25impbii 126 . 2  |-  ( ( F  Fn  (/)  /\  `' F  Fn  A )  <->  ( F  =  (/)  /\  A  =  (/) ) )
271, 26bitri 184 1  |-  ( F : (/)
-1-1-onto-> A 
<->  ( F  =  (/)  /\  A  =  (/) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1353   (/)c0 3420   `'ccnv 4619   dom cdm 4620    Fn wfn 5203   -1-1-onto->wf1o 5207
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-nul 4124  ax-pow 4169  ax-pr 4203
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-v 2737  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-nul 3421  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-br 3999  df-opab 4060  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215
This theorem is referenced by:  fo00  5489  f1o0  5490  en0  6785
  Copyright terms: Public domain W3C validator