Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > f1o00 | Unicode version |
Description: One-to-one onto mapping of the empty set. (Contributed by NM, 15-Apr-1998.) |
Ref | Expression |
---|---|
f1o00 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dff1o4 5450 | . 2 | |
2 | fn0 5317 | . . . . . 6 | |
3 | 2 | biimpi 119 | . . . . 5 |
4 | 3 | adantr 274 | . . . 4 |
5 | cnveq 4785 | . . . . . . . . . 10 | |
6 | cnv0 5014 | . . . . . . . . . 10 | |
7 | 5, 6 | eqtrdi 2219 | . . . . . . . . 9 |
8 | 2, 7 | sylbi 120 | . . . . . . . 8 |
9 | 8 | fneq1d 5288 | . . . . . . 7 |
10 | 9 | biimpa 294 | . . . . . 6 |
11 | fndm 5297 | . . . . . 6 | |
12 | 10, 11 | syl 14 | . . . . 5 |
13 | dm0 4825 | . . . . 5 | |
14 | 12, 13 | eqtr3di 2218 | . . . 4 |
15 | 4, 14 | jca 304 | . . 3 |
16 | 2 | biimpri 132 | . . . . 5 |
17 | 16 | adantr 274 | . . . 4 |
18 | eqid 2170 | . . . . . 6 | |
19 | fn0 5317 | . . . . . 6 | |
20 | 18, 19 | mpbir 145 | . . . . 5 |
21 | 7 | fneq1d 5288 | . . . . . 6 |
22 | fneq2 5287 | . . . . . 6 | |
23 | 21, 22 | sylan9bb 459 | . . . . 5 |
24 | 20, 23 | mpbiri 167 | . . . 4 |
25 | 17, 24 | jca 304 | . . 3 |
26 | 15, 25 | impbii 125 | . 2 |
27 | 1, 26 | bitri 183 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wb 104 wceq 1348 c0 3414 ccnv 4610 cdm 4611 wfn 5193 wf1o 5197 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-opab 4051 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 |
This theorem is referenced by: fo00 5478 f1o0 5479 en0 6773 |
Copyright terms: Public domain | W3C validator |