ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fo00 Unicode version

Theorem fo00 5540
Description: Onto mapping of the empty set. (Contributed by NM, 22-Mar-2006.)
Assertion
Ref Expression
fo00  |-  ( F : (/) -onto-> A  <->  ( F  =  (/)  /\  A  =  (/) ) )

Proof of Theorem fo00
StepHypRef Expression
1 fofn 5482 . . . . . 6  |-  ( F : (/) -onto-> A  ->  F  Fn  (/) )
2 fn0 5377 . . . . . . 7  |-  ( F  Fn  (/)  <->  F  =  (/) )
3 f10 5538 . . . . . . . 8  |-  (/) : (/) -1-1-> A
4 f1eq1 5458 . . . . . . . 8  |-  ( F  =  (/)  ->  ( F : (/) -1-1-> A  <->  (/) : (/) -1-1-> A ) )
53, 4mpbiri 168 . . . . . . 7  |-  ( F  =  (/)  ->  F : (/) -1-1->
A )
62, 5sylbi 121 . . . . . 6  |-  ( F  Fn  (/)  ->  F : (/) -1-1->
A )
71, 6syl 14 . . . . 5  |-  ( F : (/) -onto-> A  ->  F : (/) -1-1->
A )
87ancri 324 . . . 4  |-  ( F : (/) -onto-> A  ->  ( F : (/) -1-1-> A  /\  F : (/)
-onto-> A ) )
9 df-f1o 5265 . . . 4  |-  ( F : (/)
-1-1-onto-> A 
<->  ( F : (/) -1-1-> A  /\  F : (/) -onto-> A ) )
108, 9sylibr 134 . . 3  |-  ( F : (/) -onto-> A  ->  F : (/) -1-1-onto-> A )
11 f1ofo 5511 . . 3  |-  ( F : (/)
-1-1-onto-> A  ->  F : (/) -onto-> A )
1210, 11impbii 126 . 2  |-  ( F : (/) -onto-> A  <->  F : (/) -1-1-onto-> A )
13 f1o00 5539 . 2  |-  ( F : (/)
-1-1-onto-> A 
<->  ( F  =  (/)  /\  A  =  (/) ) )
1412, 13bitri 184 1  |-  ( F : (/) -onto-> A  <->  ( F  =  (/)  /\  A  =  (/) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1364   (/)c0 3450    Fn wfn 5253   -1-1->wf1 5255   -onto->wfo 5256   -1-1-onto->wf1o 5257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034  df-opab 4095  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265
This theorem is referenced by:  enumct  7181  fsumf1o  11555  fprodf1o  11753
  Copyright terms: Public domain W3C validator