ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1ocnvb Unicode version

Theorem f1ocnvb 5506
Description: A relation is a one-to-one onto function iff its converse is a one-to-one onto function with domain and codomain/range interchanged. (Contributed by NM, 8-Dec-2003.)
Assertion
Ref Expression
f1ocnvb  |-  ( Rel 
F  ->  ( F : A -1-1-onto-> B  <->  `' F : B -1-1-onto-> A ) )

Proof of Theorem f1ocnvb
StepHypRef Expression
1 f1ocnv 5505 . 2  |-  ( F : A -1-1-onto-> B  ->  `' F : B -1-1-onto-> A )
2 f1ocnv 5505 . . 3  |-  ( `' F : B -1-1-onto-> A  ->  `' `' F : A -1-1-onto-> B )
3 dfrel2 5108 . . . 4  |-  ( Rel 
F  <->  `' `' F  =  F
)
4 f1oeq1 5480 . . . 4  |-  ( `' `' F  =  F  ->  ( `' `' F : A -1-1-onto-> B  <->  F : A -1-1-onto-> B ) )
53, 4sylbi 121 . . 3  |-  ( Rel 
F  ->  ( `' `' F : A -1-1-onto-> B  <->  F : A
-1-1-onto-> B ) )
62, 5imbitrid 154 . 2  |-  ( Rel 
F  ->  ( `' F : B -1-1-onto-> A  ->  F : A
-1-1-onto-> B ) )
71, 6impbid2 143 1  |-  ( Rel 
F  ->  ( F : A -1-1-onto-> B  <->  `' F : B -1-1-onto-> A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1364   `'ccnv 4654   Rel wrel 4660   -1-1-onto->wf1o 5245
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-xp 4661  df-rel 4662  df-cnv 4663  df-co 4664  df-dm 4665  df-rn 4666  df-fun 5248  df-fn 5249  df-f 5250  df-f1 5251  df-fo 5252  df-f1o 5253
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator