![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > f1ocnvb | GIF version |
Description: A relation is a one-to-one onto function iff its converse is a one-to-one onto function with domain and codomain/range interchanged. (Contributed by NM, 8-Dec-2003.) |
Ref | Expression |
---|---|
f1ocnvb | ⊢ (Rel 𝐹 → (𝐹:𝐴–1-1-onto→𝐵 ↔ ◡𝐹:𝐵–1-1-onto→𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1ocnv 5513 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → ◡𝐹:𝐵–1-1-onto→𝐴) | |
2 | f1ocnv 5513 | . . 3 ⊢ (◡𝐹:𝐵–1-1-onto→𝐴 → ◡◡𝐹:𝐴–1-1-onto→𝐵) | |
3 | dfrel2 5116 | . . . 4 ⊢ (Rel 𝐹 ↔ ◡◡𝐹 = 𝐹) | |
4 | f1oeq1 5488 | . . . 4 ⊢ (◡◡𝐹 = 𝐹 → (◡◡𝐹:𝐴–1-1-onto→𝐵 ↔ 𝐹:𝐴–1-1-onto→𝐵)) | |
5 | 3, 4 | sylbi 121 | . . 3 ⊢ (Rel 𝐹 → (◡◡𝐹:𝐴–1-1-onto→𝐵 ↔ 𝐹:𝐴–1-1-onto→𝐵)) |
6 | 2, 5 | imbitrid 154 | . 2 ⊢ (Rel 𝐹 → (◡𝐹:𝐵–1-1-onto→𝐴 → 𝐹:𝐴–1-1-onto→𝐵)) |
7 | 1, 6 | impbid2 143 | 1 ⊢ (Rel 𝐹 → (𝐹:𝐴–1-1-onto→𝐵 ↔ ◡𝐹:𝐵–1-1-onto→𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ◡ccnv 4658 Rel wrel 4664 –1-1-onto→wf1o 5253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-br 4030 df-opab 4091 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |