ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1ocnvb GIF version

Theorem f1ocnvb 5548
Description: A relation is a one-to-one onto function iff its converse is a one-to-one onto function with domain and codomain/range interchanged. (Contributed by NM, 8-Dec-2003.)
Assertion
Ref Expression
f1ocnvb (Rel 𝐹 → (𝐹:𝐴1-1-onto𝐵𝐹:𝐵1-1-onto𝐴))

Proof of Theorem f1ocnvb
StepHypRef Expression
1 f1ocnv 5547 . 2 (𝐹:𝐴1-1-onto𝐵𝐹:𝐵1-1-onto𝐴)
2 f1ocnv 5547 . . 3 (𝐹:𝐵1-1-onto𝐴𝐹:𝐴1-1-onto𝐵)
3 dfrel2 5142 . . . 4 (Rel 𝐹𝐹 = 𝐹)
4 f1oeq1 5522 . . . 4 (𝐹 = 𝐹 → (𝐹:𝐴1-1-onto𝐵𝐹:𝐴1-1-onto𝐵))
53, 4sylbi 121 . . 3 (Rel 𝐹 → (𝐹:𝐴1-1-onto𝐵𝐹:𝐴1-1-onto𝐵))
62, 5imbitrid 154 . 2 (Rel 𝐹 → (𝐹:𝐵1-1-onto𝐴𝐹:𝐴1-1-onto𝐵))
71, 6impbid2 143 1 (Rel 𝐹 → (𝐹:𝐴1-1-onto𝐵𝐹:𝐵1-1-onto𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1373  ccnv 4682  Rel wrel 4688  1-1-ontowf1o 5279
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-br 4052  df-opab 4114  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator