ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1ocpbl Unicode version

Theorem f1ocpbl 12897
Description: An injection is compatible with any operations on the base set. (Contributed by Mario Carneiro, 24-Feb-2015.)
Hypothesis
Ref Expression
f1ocpbl.f  |-  ( ph  ->  F : V -1-1-onto-> X )
Assertion
Ref Expression
f1ocpbl  |-  ( (
ph  /\  ( A  e.  V  /\  B  e.  V )  /\  ( C  e.  V  /\  D  e.  V )
)  ->  ( (
( F `  A
)  =  ( F `
 C )  /\  ( F `  B )  =  ( F `  D ) )  -> 
( F `  ( A  .+  B ) )  =  ( F `  ( C  .+  D ) ) ) )

Proof of Theorem f1ocpbl
StepHypRef Expression
1 f1ocpbl.f . . 3  |-  ( ph  ->  F : V -1-1-onto-> X )
21f1ocpbllem 12896 . 2  |-  ( (
ph  /\  ( A  e.  V  /\  B  e.  V )  /\  ( C  e.  V  /\  D  e.  V )
)  ->  ( (
( F `  A
)  =  ( F `
 C )  /\  ( F `  B )  =  ( F `  D ) )  <->  ( A  =  C  /\  B  =  D ) ) )
3 oveq12 5928 . . 3  |-  ( ( A  =  C  /\  B  =  D )  ->  ( A  .+  B
)  =  ( C 
.+  D ) )
43fveq2d 5559 . 2  |-  ( ( A  =  C  /\  B  =  D )  ->  ( F `  ( A  .+  B ) )  =  ( F `  ( C  .+  D ) ) )
52, 4biimtrdi 163 1  |-  ( (
ph  /\  ( A  e.  V  /\  B  e.  V )  /\  ( C  e.  V  /\  D  e.  V )
)  ->  ( (
( F `  A
)  =  ( F `
 C )  /\  ( F `  B )  =  ( F `  D ) )  -> 
( F `  ( A  .+  B ) )  =  ( F `  ( C  .+  D ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2164   -1-1-onto->wf1o 5254   ` cfv 5255  (class class class)co 5919
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2987  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-f1o 5262  df-fv 5263  df-ov 5922
This theorem is referenced by:  imasgrpf1  13185  imasrngf1  13456  imasringf1  13564
  Copyright terms: Public domain W3C validator