Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > oveq12 | Unicode version |
Description: Equality theorem for operation value. (Contributed by NM, 16-Jul-1995.) |
Ref | Expression |
---|---|
oveq12 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 5825 | . 2 | |
2 | oveq2 5826 | . 2 | |
3 | 1, 2 | sylan9eq 2210 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1335 (class class class)co 5818 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-rex 2441 df-v 2714 df-un 3106 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-br 3966 df-iota 5132 df-fv 5175 df-ov 5821 |
This theorem is referenced by: oveq12i 5830 oveq12d 5836 oveqan12d 5837 ecopoveq 6568 ecopovtrn 6570 ecopovtrng 6573 th3qlem1 6575 th3qlem2 6576 mulcmpblnq 7271 addpipqqs 7273 ordpipqqs 7277 enq0breq 7339 mulcmpblnq0 7347 nqpnq0nq 7356 nqnq0a 7357 nqnq0m 7358 nq0m0r 7359 nq0a0 7360 distrlem5prl 7489 distrlem5pru 7490 addcmpblnr 7642 ltsrprg 7650 mulgt0sr 7681 add20 8332 cru 8460 qaddcl 9526 qmulcl 9528 xaddval 9731 xnn0xadd0 9753 fzopth 9945 modqval 10205 seqvalcd 10340 seqovcd 10344 1exp 10430 m1expeven 10448 nn0opthd 10578 faclbnd 10597 faclbnd3 10599 bcn0 10611 reval 10731 absval 10883 clim 11160 fsumparts 11349 dvds2add 11702 dvds2sub 11703 opoe 11767 omoe 11768 opeo 11769 omeo 11770 gcddvds 11827 gcdcl 11830 gcdeq0 11841 gcdneg 11846 gcdaddm 11848 gcdabs 11852 gcddiv 11883 eucalgval2 11910 lcmabs 11933 rpmul 11955 divgcdcoprmex 11959 prmexpb 12005 rpexp 12007 nn0gcdsq 12054 cnmpt2t 12653 cnmpt22f 12655 hmeofvalg 12663 bdmetval 12860 |
Copyright terms: Public domain | W3C validator |