Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > oveq12 | Unicode version |
Description: Equality theorem for operation value. (Contributed by NM, 16-Jul-1995.) |
Ref | Expression |
---|---|
oveq12 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 5848 | . 2 | |
2 | oveq2 5849 | . 2 | |
3 | 1, 2 | sylan9eq 2218 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1343 (class class class)co 5841 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-rex 2449 df-v 2727 df-un 3119 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-br 3982 df-iota 5152 df-fv 5195 df-ov 5844 |
This theorem is referenced by: oveq12i 5853 oveq12d 5859 oveqan12d 5860 ecopoveq 6592 ecopovtrn 6594 ecopovtrng 6597 th3qlem1 6599 th3qlem2 6600 mulcmpblnq 7305 addpipqqs 7307 ordpipqqs 7311 enq0breq 7373 mulcmpblnq0 7381 nqpnq0nq 7390 nqnq0a 7391 nqnq0m 7392 nq0m0r 7393 nq0a0 7394 distrlem5prl 7523 distrlem5pru 7524 addcmpblnr 7676 ltsrprg 7684 mulgt0sr 7715 add20 8368 cru 8496 qaddcl 9569 qmulcl 9571 xaddval 9777 xnn0xadd0 9799 fzopth 9992 modqval 10255 seqvalcd 10390 seqovcd 10394 1exp 10480 m1expeven 10498 nn0opthd 10631 faclbnd 10650 faclbnd3 10652 bcn0 10664 reval 10787 absval 10939 clim 11218 fsumparts 11407 dvds2add 11761 dvds2sub 11762 opoe 11828 omoe 11829 opeo 11830 omeo 11831 gcddvds 11892 gcdcl 11895 gcdeq0 11906 gcdneg 11911 gcdaddm 11913 gcdabs 11917 gcddiv 11948 eucalgval2 11981 lcmabs 12004 rpmul 12026 divgcdcoprmex 12030 prmexpb 12079 rpexp 12081 nn0gcdsq 12128 pcqmul 12231 mul4sq 12320 cnmpt2t 12893 cnmpt22f 12895 hmeofvalg 12903 bdmetval 13100 mul2sq 13552 |
Copyright terms: Public domain | W3C validator |