![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > oveq12 | Unicode version |
Description: Equality theorem for operation value. (Contributed by NM, 16-Jul-1995.) |
Ref | Expression |
---|---|
oveq12 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 5925 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | oveq2 5926 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | sylan9eq 2246 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-rex 2478 df-v 2762 df-un 3157 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-iota 5215 df-fv 5262 df-ov 5921 |
This theorem is referenced by: oveq12i 5930 oveq12d 5936 oveqan12d 5937 ecopoveq 6684 ecopovtrn 6686 ecopovtrng 6689 th3qlem1 6691 th3qlem2 6692 mulcmpblnq 7428 addpipqqs 7430 ordpipqqs 7434 enq0breq 7496 mulcmpblnq0 7504 nqpnq0nq 7513 nqnq0a 7514 nqnq0m 7515 nq0m0r 7516 nq0a0 7517 distrlem5prl 7646 distrlem5pru 7647 addcmpblnr 7799 ltsrprg 7807 mulgt0sr 7838 add20 8493 cru 8621 qaddcl 9700 qmulcl 9702 xaddval 9911 xnn0xadd0 9933 fzopth 10127 modqval 10395 seqvalcd 10532 seqovcd 10538 1exp 10639 m1expeven 10657 nn0opthd 10793 faclbnd 10812 faclbnd3 10814 bcn0 10826 reval 10993 absval 11145 clim 11424 fsumparts 11613 dvds2add 11968 dvds2sub 11969 opoe 12036 omoe 12037 opeo 12038 omeo 12039 gcddvds 12100 gcdcl 12103 gcdeq0 12114 gcdneg 12119 gcdaddm 12121 gcdabs 12125 gcddiv 12156 eucalgval2 12191 lcmabs 12214 rpmul 12236 divgcdcoprmex 12240 prmexpb 12289 rpexp 12291 nn0gcdsq 12338 pcqmul 12441 mul4sq 12532 f1ocpbl 12894 plusfvalg 12946 0subm 13056 imasabl 13406 ringadd2 13523 dfrhm2 13650 isrhm 13654 isrim0 13657 rhmval 13669 aprval 13778 scafvalg 13803 rmodislmodlem 13846 rmodislmod 13847 lss1d 13879 znidom 14145 cnmpt2t 14461 cnmpt22f 14463 hmeofvalg 14471 bdmetval 14668 mul2sq 15203 |
Copyright terms: Public domain | W3C validator |