| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > oveq12 | Unicode version | ||
| Description: Equality theorem for operation value. (Contributed by NM, 16-Jul-1995.) |
| Ref | Expression |
|---|---|
| oveq12 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 5974 |
. 2
| |
| 2 | oveq2 5975 |
. 2
| |
| 3 | 1, 2 | sylan9eq 2260 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-rex 2492 df-v 2778 df-un 3178 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-iota 5251 df-fv 5298 df-ov 5970 |
| This theorem is referenced by: oveq12i 5979 oveq12d 5985 oveqan12d 5986 ecopoveq 6740 ecopovtrn 6742 ecopovtrng 6745 th3qlem1 6747 th3qlem2 6748 mulcmpblnq 7516 addpipqqs 7518 ordpipqqs 7522 enq0breq 7584 mulcmpblnq0 7592 nqpnq0nq 7601 nqnq0a 7602 nqnq0m 7603 nq0m0r 7604 nq0a0 7605 distrlem5prl 7734 distrlem5pru 7735 addcmpblnr 7887 ltsrprg 7895 mulgt0sr 7926 add20 8582 cru 8710 qaddcl 9791 qmulcl 9793 xaddval 10002 xnn0xadd0 10024 fzopth 10218 modqval 10506 seqvalcd 10643 seqovcd 10649 1exp 10750 m1expeven 10768 nn0opthd 10904 faclbnd 10923 faclbnd3 10925 bcn0 10937 ccatopth 11207 ccatopth2 11208 reval 11275 absval 11427 clim 11707 fsumparts 11896 dvds2add 12251 dvds2sub 12252 opoe 12321 omoe 12322 opeo 12323 omeo 12324 gcddvds 12399 gcdcl 12402 gcdeq0 12413 gcdneg 12418 gcdaddm 12420 gcdabs 12424 gcddiv 12455 eucalgval2 12490 lcmabs 12513 rpmul 12535 divgcdcoprmex 12539 prmexpb 12588 rpexp 12590 nn0gcdsq 12637 pcqmul 12741 mul4sq 12832 f1ocpbl 13258 plusfvalg 13310 0subm 13431 imasabl 13787 ringadd2 13904 dfrhm2 14031 isrhm 14035 isrim0 14038 rhmval 14050 aprval 14159 scafvalg 14184 rmodislmodlem 14227 rmodislmod 14228 lss1d 14260 znidom 14534 mplvalcoe 14567 cnmpt2t 14880 cnmpt22f 14882 hmeofvalg 14890 bdmetval 15087 plycn 15349 mul2sq 15708 |
| Copyright terms: Public domain | W3C validator |