| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > oveq12 | Unicode version | ||
| Description: Equality theorem for operation value. (Contributed by NM, 16-Jul-1995.) |
| Ref | Expression |
|---|---|
| oveq12 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 5953 |
. 2
| |
| 2 | oveq2 5954 |
. 2
| |
| 3 | 1, 2 | sylan9eq 2258 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-rex 2490 df-v 2774 df-un 3170 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4046 df-iota 5233 df-fv 5280 df-ov 5949 |
| This theorem is referenced by: oveq12i 5958 oveq12d 5964 oveqan12d 5965 ecopoveq 6719 ecopovtrn 6721 ecopovtrng 6724 th3qlem1 6726 th3qlem2 6727 mulcmpblnq 7483 addpipqqs 7485 ordpipqqs 7489 enq0breq 7551 mulcmpblnq0 7559 nqpnq0nq 7568 nqnq0a 7569 nqnq0m 7570 nq0m0r 7571 nq0a0 7572 distrlem5prl 7701 distrlem5pru 7702 addcmpblnr 7854 ltsrprg 7862 mulgt0sr 7893 add20 8549 cru 8677 qaddcl 9758 qmulcl 9760 xaddval 9969 xnn0xadd0 9991 fzopth 10185 modqval 10471 seqvalcd 10608 seqovcd 10614 1exp 10715 m1expeven 10733 nn0opthd 10869 faclbnd 10888 faclbnd3 10890 bcn0 10902 reval 11193 absval 11345 clim 11625 fsumparts 11814 dvds2add 12169 dvds2sub 12170 opoe 12239 omoe 12240 opeo 12241 omeo 12242 gcddvds 12317 gcdcl 12320 gcdeq0 12331 gcdneg 12336 gcdaddm 12338 gcdabs 12342 gcddiv 12373 eucalgval2 12408 lcmabs 12431 rpmul 12453 divgcdcoprmex 12457 prmexpb 12506 rpexp 12508 nn0gcdsq 12555 pcqmul 12659 mul4sq 12750 f1ocpbl 13176 plusfvalg 13228 0subm 13349 imasabl 13705 ringadd2 13822 dfrhm2 13949 isrhm 13953 isrim0 13956 rhmval 13968 aprval 14077 scafvalg 14102 rmodislmodlem 14145 rmodislmod 14146 lss1d 14178 znidom 14452 mplvalcoe 14485 cnmpt2t 14798 cnmpt22f 14800 hmeofvalg 14808 bdmetval 15005 plycn 15267 mul2sq 15626 |
| Copyright terms: Public domain | W3C validator |