![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > oveq12 | Unicode version |
Description: Equality theorem for operation value. (Contributed by NM, 16-Jul-1995.) |
Ref | Expression |
---|---|
oveq12 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 5926 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | oveq2 5927 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | sylan9eq 2246 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-rex 2478 df-v 2762 df-un 3158 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-iota 5216 df-fv 5263 df-ov 5922 |
This theorem is referenced by: oveq12i 5931 oveq12d 5937 oveqan12d 5938 ecopoveq 6686 ecopovtrn 6688 ecopovtrng 6691 th3qlem1 6693 th3qlem2 6694 mulcmpblnq 7430 addpipqqs 7432 ordpipqqs 7436 enq0breq 7498 mulcmpblnq0 7506 nqpnq0nq 7515 nqnq0a 7516 nqnq0m 7517 nq0m0r 7518 nq0a0 7519 distrlem5prl 7648 distrlem5pru 7649 addcmpblnr 7801 ltsrprg 7809 mulgt0sr 7840 add20 8495 cru 8623 qaddcl 9703 qmulcl 9705 xaddval 9914 xnn0xadd0 9936 fzopth 10130 modqval 10398 seqvalcd 10535 seqovcd 10541 1exp 10642 m1expeven 10660 nn0opthd 10796 faclbnd 10815 faclbnd3 10817 bcn0 10829 reval 10996 absval 11148 clim 11427 fsumparts 11616 dvds2add 11971 dvds2sub 11972 opoe 12039 omoe 12040 opeo 12041 omeo 12042 gcddvds 12103 gcdcl 12106 gcdeq0 12117 gcdneg 12122 gcdaddm 12124 gcdabs 12128 gcddiv 12159 eucalgval2 12194 lcmabs 12217 rpmul 12239 divgcdcoprmex 12243 prmexpb 12292 rpexp 12294 nn0gcdsq 12341 pcqmul 12444 mul4sq 12535 f1ocpbl 12897 plusfvalg 12949 0subm 13059 imasabl 13409 ringadd2 13526 dfrhm2 13653 isrhm 13657 isrim0 13660 rhmval 13672 aprval 13781 scafvalg 13806 rmodislmodlem 13849 rmodislmod 13850 lss1d 13882 znidom 14156 cnmpt2t 14472 cnmpt22f 14474 hmeofvalg 14482 bdmetval 14679 plycn 14940 mul2sq 15273 |
Copyright terms: Public domain | W3C validator |