| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > oveq12 | Unicode version | ||
| Description: Equality theorem for operation value. (Contributed by NM, 16-Jul-1995.) |
| Ref | Expression |
|---|---|
| oveq12 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 5932 |
. 2
| |
| 2 | oveq2 5933 |
. 2
| |
| 3 | 1, 2 | sylan9eq 2249 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 df-un 3161 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-iota 5220 df-fv 5267 df-ov 5928 |
| This theorem is referenced by: oveq12i 5937 oveq12d 5943 oveqan12d 5944 ecopoveq 6698 ecopovtrn 6700 ecopovtrng 6703 th3qlem1 6705 th3qlem2 6706 mulcmpblnq 7452 addpipqqs 7454 ordpipqqs 7458 enq0breq 7520 mulcmpblnq0 7528 nqpnq0nq 7537 nqnq0a 7538 nqnq0m 7539 nq0m0r 7540 nq0a0 7541 distrlem5prl 7670 distrlem5pru 7671 addcmpblnr 7823 ltsrprg 7831 mulgt0sr 7862 add20 8518 cru 8646 qaddcl 9726 qmulcl 9728 xaddval 9937 xnn0xadd0 9959 fzopth 10153 modqval 10433 seqvalcd 10570 seqovcd 10576 1exp 10677 m1expeven 10695 nn0opthd 10831 faclbnd 10850 faclbnd3 10852 bcn0 10864 reval 11031 absval 11183 clim 11463 fsumparts 11652 dvds2add 12007 dvds2sub 12008 opoe 12077 omoe 12078 opeo 12079 omeo 12080 gcddvds 12155 gcdcl 12158 gcdeq0 12169 gcdneg 12174 gcdaddm 12176 gcdabs 12180 gcddiv 12211 eucalgval2 12246 lcmabs 12269 rpmul 12291 divgcdcoprmex 12295 prmexpb 12344 rpexp 12346 nn0gcdsq 12393 pcqmul 12497 mul4sq 12588 f1ocpbl 13013 plusfvalg 13065 0subm 13186 imasabl 13542 ringadd2 13659 dfrhm2 13786 isrhm 13790 isrim0 13793 rhmval 13805 aprval 13914 scafvalg 13939 rmodislmodlem 13982 rmodislmod 13983 lss1d 14015 znidom 14289 cnmpt2t 14613 cnmpt22f 14615 hmeofvalg 14623 bdmetval 14820 plycn 15082 mul2sq 15441 |
| Copyright terms: Public domain | W3C validator |