ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1ovscpbl Unicode version

Theorem f1ovscpbl 12895
Description: An injection is compatible with any operations on the base set. (Contributed by Mario Carneiro, 15-Aug-2015.)
Hypothesis
Ref Expression
f1ocpbl.f  |-  ( ph  ->  F : V -1-1-onto-> X )
Assertion
Ref Expression
f1ovscpbl  |-  ( (
ph  /\  ( A  e.  K  /\  B  e.  V  /\  C  e.  V ) )  -> 
( ( F `  B )  =  ( F `  C )  ->  ( F `  ( A  .+  B ) )  =  ( F `
 ( A  .+  C ) ) ) )

Proof of Theorem f1ovscpbl
StepHypRef Expression
1 f1ocpbl.f . . . . 5  |-  ( ph  ->  F : V -1-1-onto-> X )
2 f1of1 5499 . . . . 5  |-  ( F : V -1-1-onto-> X  ->  F : V -1-1-> X )
31, 2syl 14 . . . 4  |-  ( ph  ->  F : V -1-1-> X
)
43adantr 276 . . 3  |-  ( (
ph  /\  ( A  e.  K  /\  B  e.  V  /\  C  e.  V ) )  ->  F : V -1-1-> X )
5 simpr2 1006 . . 3  |-  ( (
ph  /\  ( A  e.  K  /\  B  e.  V  /\  C  e.  V ) )  ->  B  e.  V )
6 simpr3 1007 . . 3  |-  ( (
ph  /\  ( A  e.  K  /\  B  e.  V  /\  C  e.  V ) )  ->  C  e.  V )
7 f1fveq 5815 . . 3  |-  ( ( F : V -1-1-> X  /\  ( B  e.  V  /\  C  e.  V
) )  ->  (
( F `  B
)  =  ( F `
 C )  <->  B  =  C ) )
84, 5, 6, 7syl12anc 1247 . 2  |-  ( (
ph  /\  ( A  e.  K  /\  B  e.  V  /\  C  e.  V ) )  -> 
( ( F `  B )  =  ( F `  C )  <-> 
B  =  C ) )
9 oveq2 5926 . . 3  |-  ( B  =  C  ->  ( A  .+  B )  =  ( A  .+  C
) )
109fveq2d 5558 . 2  |-  ( B  =  C  ->  ( F `  ( A  .+  B ) )  =  ( F `  ( A  .+  C ) ) )
118, 10biimtrdi 163 1  |-  ( (
ph  /\  ( A  e.  K  /\  B  e.  V  /\  C  e.  V ) )  -> 
( ( F `  B )  =  ( F `  C )  ->  ( F `  ( A  .+  B ) )  =  ( F `
 ( A  .+  C ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2164   -1-1->wf1 5251   -1-1-onto->wf1o 5253   ` cfv 5254  (class class class)co 5918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-f1o 5261  df-fv 5262  df-ov 5921
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator