ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1ovscpbl Unicode version

Theorem f1ovscpbl 12738
Description: An injection is compatible with any operations on the base set. (Contributed by Mario Carneiro, 15-Aug-2015.)
Hypothesis
Ref Expression
f1ocpbl.f  |-  ( ph  ->  F : V -1-1-onto-> X )
Assertion
Ref Expression
f1ovscpbl  |-  ( (
ph  /\  ( A  e.  K  /\  B  e.  V  /\  C  e.  V ) )  -> 
( ( F `  B )  =  ( F `  C )  ->  ( F `  ( A  .+  B ) )  =  ( F `
 ( A  .+  C ) ) ) )

Proof of Theorem f1ovscpbl
StepHypRef Expression
1 f1ocpbl.f . . . . 5  |-  ( ph  ->  F : V -1-1-onto-> X )
2 f1of1 5462 . . . . 5  |-  ( F : V -1-1-onto-> X  ->  F : V -1-1-> X )
31, 2syl 14 . . . 4  |-  ( ph  ->  F : V -1-1-> X
)
43adantr 276 . . 3  |-  ( (
ph  /\  ( A  e.  K  /\  B  e.  V  /\  C  e.  V ) )  ->  F : V -1-1-> X )
5 simpr2 1004 . . 3  |-  ( (
ph  /\  ( A  e.  K  /\  B  e.  V  /\  C  e.  V ) )  ->  B  e.  V )
6 simpr3 1005 . . 3  |-  ( (
ph  /\  ( A  e.  K  /\  B  e.  V  /\  C  e.  V ) )  ->  C  e.  V )
7 f1fveq 5775 . . 3  |-  ( ( F : V -1-1-> X  /\  ( B  e.  V  /\  C  e.  V
) )  ->  (
( F `  B
)  =  ( F `
 C )  <->  B  =  C ) )
84, 5, 6, 7syl12anc 1236 . 2  |-  ( (
ph  /\  ( A  e.  K  /\  B  e.  V  /\  C  e.  V ) )  -> 
( ( F `  B )  =  ( F `  C )  <-> 
B  =  C ) )
9 oveq2 5885 . . 3  |-  ( B  =  C  ->  ( A  .+  B )  =  ( A  .+  C
) )
109fveq2d 5521 . 2  |-  ( B  =  C  ->  ( F `  ( A  .+  B ) )  =  ( F `  ( A  .+  C ) ) )
118, 10biimtrdi 163 1  |-  ( (
ph  /\  ( A  e.  K  /\  B  e.  V  /\  C  e.  V ) )  -> 
( ( F `  B )  =  ( F `  C )  ->  ( F `  ( A  .+  B ) )  =  ( F `
 ( A  .+  C ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 978    = wceq 1353    e. wcel 2148   -1-1->wf1 5215   -1-1-onto->wf1o 5217   ` cfv 5218  (class class class)co 5877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-sbc 2965  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-f1o 5225  df-fv 5226  df-ov 5880
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator