ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1ocpbllem Unicode version

Theorem f1ocpbllem 12787
Description: Lemma for f1ocpbl 12788. (Contributed by Mario Carneiro, 24-Feb-2015.)
Hypothesis
Ref Expression
f1ocpbl.f  |-  ( ph  ->  F : V -1-1-onto-> X )
Assertion
Ref Expression
f1ocpbllem  |-  ( (
ph  /\  ( A  e.  V  /\  B  e.  V )  /\  ( C  e.  V  /\  D  e.  V )
)  ->  ( (
( F `  A
)  =  ( F `
 C )  /\  ( F `  B )  =  ( F `  D ) )  <->  ( A  =  C  /\  B  =  D ) ) )

Proof of Theorem f1ocpbllem
StepHypRef Expression
1 f1ocpbl.f . . . . 5  |-  ( ph  ->  F : V -1-1-onto-> X )
2 f1of1 5479 . . . . 5  |-  ( F : V -1-1-onto-> X  ->  F : V -1-1-> X )
31, 2syl 14 . . . 4  |-  ( ph  ->  F : V -1-1-> X
)
433ad2ant1 1020 . . 3  |-  ( (
ph  /\  ( A  e.  V  /\  B  e.  V )  /\  ( C  e.  V  /\  D  e.  V )
)  ->  F : V -1-1-> X )
5 simp2l 1025 . . 3  |-  ( (
ph  /\  ( A  e.  V  /\  B  e.  V )  /\  ( C  e.  V  /\  D  e.  V )
)  ->  A  e.  V )
6 simp3l 1027 . . 3  |-  ( (
ph  /\  ( A  e.  V  /\  B  e.  V )  /\  ( C  e.  V  /\  D  e.  V )
)  ->  C  e.  V )
7 f1fveq 5794 . . 3  |-  ( ( F : V -1-1-> X  /\  ( A  e.  V  /\  C  e.  V
) )  ->  (
( F `  A
)  =  ( F `
 C )  <->  A  =  C ) )
84, 5, 6, 7syl12anc 1247 . 2  |-  ( (
ph  /\  ( A  e.  V  /\  B  e.  V )  /\  ( C  e.  V  /\  D  e.  V )
)  ->  ( ( F `  A )  =  ( F `  C )  <->  A  =  C ) )
9 simp2r 1026 . . 3  |-  ( (
ph  /\  ( A  e.  V  /\  B  e.  V )  /\  ( C  e.  V  /\  D  e.  V )
)  ->  B  e.  V )
10 simp3r 1028 . . 3  |-  ( (
ph  /\  ( A  e.  V  /\  B  e.  V )  /\  ( C  e.  V  /\  D  e.  V )
)  ->  D  e.  V )
11 f1fveq 5794 . . 3  |-  ( ( F : V -1-1-> X  /\  ( B  e.  V  /\  D  e.  V
) )  ->  (
( F `  B
)  =  ( F `
 D )  <->  B  =  D ) )
124, 9, 10, 11syl12anc 1247 . 2  |-  ( (
ph  /\  ( A  e.  V  /\  B  e.  V )  /\  ( C  e.  V  /\  D  e.  V )
)  ->  ( ( F `  B )  =  ( F `  D )  <->  B  =  D ) )
138, 12anbi12d 473 1  |-  ( (
ph  /\  ( A  e.  V  /\  B  e.  V )  /\  ( C  e.  V  /\  D  e.  V )
)  ->  ( (
( F `  A
)  =  ( F `
 C )  /\  ( F `  B )  =  ( F `  D ) )  <->  ( A  =  C  /\  B  =  D ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2160   -1-1->wf1 5232   -1-1-onto->wf1o 5234   ` cfv 5235
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-v 2754  df-sbc 2978  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-br 4019  df-opab 4080  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-f1o 5242  df-fv 5243
This theorem is referenced by:  f1ocpbl  12788  f1olecpbl  12790
  Copyright terms: Public domain W3C validator