Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > f1oeng | Unicode version |
Description: The domain and range of a one-to-one, onto function are equinumerous. (Contributed by NM, 19-Jun-1998.) |
Ref | Expression |
---|---|
f1oeng |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1ofo 5438 | . . . 4 | |
2 | fornex 6080 | . . . 4 | |
3 | 1, 2 | syl5 32 | . . 3 |
4 | 3 | imp 123 | . 2 |
5 | f1oen2g 6717 | . . 3 | |
6 | 5 | 3com23 1199 | . 2 |
7 | 4, 6 | mpd3an3 1328 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wcel 2136 cvv 2725 class class class wbr 3981 wfo 5185 wf1o 5186 cen 6700 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4096 ax-sep 4099 ax-pow 4152 ax-pr 4186 ax-un 4410 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ral 2448 df-rex 2449 df-reu 2450 df-rab 2452 df-v 2727 df-sbc 2951 df-csb 3045 df-un 3119 df-in 3121 df-ss 3128 df-pw 3560 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-iun 3867 df-br 3982 df-opab 4043 df-mpt 4044 df-id 4270 df-xp 4609 df-rel 4610 df-cnv 4611 df-co 4612 df-dm 4613 df-rn 4614 df-res 4615 df-ima 4616 df-iota 5152 df-fun 5189 df-fn 5190 df-f 5191 df-f1 5192 df-fo 5193 df-f1o 5194 df-fv 5195 df-en 6703 |
This theorem is referenced by: f1oen 6721 f1imaeng 6754 xpen 6807 fidifsnen 6832 dif1en 6841 f1ofi 6904 f1dmvrnfibi 6905 omp1eom 7056 endjusym 7057 eninl 7058 eninr 7059 summodclem2 11319 zsumdc 11321 prodmodclem2 11514 zproddc 11516 eulerthlemh 12159 ssnnctlemct 12375 pwf1oexmid 13839 |
Copyright terms: Public domain | W3C validator |