| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > f1oeng | Unicode version | ||
| Description: The domain and range of a one-to-one, onto function are equinumerous. (Contributed by NM, 19-Jun-1998.) |
| Ref | Expression |
|---|---|
| f1oeng |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1ofo 5551 |
. . . 4
| |
| 2 | focdmex 6223 |
. . . 4
| |
| 3 | 1, 2 | syl5 32 |
. . 3
|
| 4 | 3 | imp 124 |
. 2
|
| 5 | f1oen2g 6869 |
. . 3
| |
| 6 | 5 | 3com23 1212 |
. 2
|
| 7 | 4, 6 | mpd3an3 1351 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-en 6851 |
| This theorem is referenced by: f1oen 6873 f1imaeng 6907 xpen 6967 fidifsnen 6993 dif1en 7002 f1ofi 7071 f1dmvrnfibi 7072 omp1eom 7223 endjusym 7224 eninl 7225 eninr 7226 summodclem2 11808 zsumdc 11810 prodmodclem2 12003 zproddc 12005 eulerthlemh 12668 4sqlem11 12839 ssnnctlemct 12932 conjsubgen 13729 znfi 14532 znhash 14533 2omapen 16133 pw1mapen 16135 pwf1oexmid 16138 |
| Copyright terms: Public domain | W3C validator |