ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1oeng Unicode version

Theorem f1oeng 6756
Description: The domain and range of a one-to-one, onto function are equinumerous. (Contributed by NM, 19-Jun-1998.)
Assertion
Ref Expression
f1oeng  |-  ( ( A  e.  C  /\  F : A -1-1-onto-> B )  ->  A  ~~  B )

Proof of Theorem f1oeng
StepHypRef Expression
1 f1ofo 5468 . . . 4  |-  ( F : A -1-1-onto-> B  ->  F : A -onto-> B )
2 focdmex 6115 . . . 4  |-  ( A  e.  C  ->  ( F : A -onto-> B  ->  B  e.  _V )
)
31, 2syl5 32 . . 3  |-  ( A  e.  C  ->  ( F : A -1-1-onto-> B  ->  B  e.  _V ) )
43imp 124 . 2  |-  ( ( A  e.  C  /\  F : A -1-1-onto-> B )  ->  B  e.  _V )
5 f1oen2g 6754 . . 3  |-  ( ( A  e.  C  /\  B  e.  _V  /\  F : A -1-1-onto-> B )  ->  A  ~~  B )
653com23 1209 . 2  |-  ( ( A  e.  C  /\  F : A -1-1-onto-> B  /\  B  e. 
_V )  ->  A  ~~  B )
74, 6mpd3an3 1338 1  |-  ( ( A  e.  C  /\  F : A -1-1-onto-> B )  ->  A  ~~  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2148   _Vcvv 2737   class class class wbr 4003   -onto->wfo 5214   -1-1-onto->wf1o 5215    ~~ cen 6737
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4118  ax-sep 4121  ax-pow 4174  ax-pr 4209  ax-un 4433
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-un 3133  df-in 3135  df-ss 3142  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-iun 3888  df-br 4004  df-opab 4065  df-mpt 4066  df-id 4293  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-ima 4639  df-iota 5178  df-fun 5218  df-fn 5219  df-f 5220  df-f1 5221  df-fo 5222  df-f1o 5223  df-fv 5224  df-en 6740
This theorem is referenced by:  f1oen  6758  f1imaeng  6791  xpen  6844  fidifsnen  6869  dif1en  6878  f1ofi  6941  f1dmvrnfibi  6942  omp1eom  7093  endjusym  7094  eninl  7095  eninr  7096  summodclem2  11389  zsumdc  11391  prodmodclem2  11584  zproddc  11586  eulerthlemh  12230  ssnnctlemct  12446  pwf1oexmid  14719
  Copyright terms: Public domain W3C validator