Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > f1oeng | Unicode version |
Description: The domain and range of a one-to-one, onto function are equinumerous. (Contributed by NM, 19-Jun-1998.) |
Ref | Expression |
---|---|
f1oeng |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1ofo 5449 | . . . 4 | |
2 | fornex 6094 | . . . 4 | |
3 | 1, 2 | syl5 32 | . . 3 |
4 | 3 | imp 123 | . 2 |
5 | f1oen2g 6733 | . . 3 | |
6 | 5 | 3com23 1204 | . 2 |
7 | 4, 6 | mpd3an3 1333 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wcel 2141 cvv 2730 class class class wbr 3989 wfo 5196 wf1o 5197 cen 6716 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-en 6719 |
This theorem is referenced by: f1oen 6737 f1imaeng 6770 xpen 6823 fidifsnen 6848 dif1en 6857 f1ofi 6920 f1dmvrnfibi 6921 omp1eom 7072 endjusym 7073 eninl 7074 eninr 7075 summodclem2 11345 zsumdc 11347 prodmodclem2 11540 zproddc 11542 eulerthlemh 12185 ssnnctlemct 12401 pwf1oexmid 14032 |
Copyright terms: Public domain | W3C validator |