| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > f1of1 | Unicode version | ||
| Description: A one-to-one onto mapping is a one-to-one mapping. (Contributed by NM, 12-Dec-2003.) |
| Ref | Expression |
|---|---|
| f1of1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-f1o 5266 |
. 2
| |
| 2 | 1 | simplbi 274 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 df-f1o 5266 |
| This theorem is referenced by: f1of 5507 f1sng 5549 f1oresrab 5730 f1ocnvfvrneq 5832 isores3 5865 isoini2 5869 f1oiso 5876 f1opw2 6133 tposf12 6336 enssdom 6830 mapen 6916 ssenen 6921 phplem4 6925 phplem4on 6937 fidceq 6939 en2eqpr 6977 fiintim 7001 f1finf1o 7022 preimaf1ofi 7026 isotilem 7081 inresflem 7135 casefun 7160 endjusym 7171 dju1p1e2 7276 frec2uzled 10538 iseqf1olemnab 10610 iseqf1olemab 10611 iseqf1olemnanb 10612 seqf1oglem1 10628 hashen 10893 hashfacen 10945 negfi 11410 fisumss 11574 fprodssdc 11772 phimullem 12418 eulerthlemh 12424 ctinfom 12670 ssnnctlemct 12688 f1ocpbllem 13012 f1ovscpbl 13014 xpsff1o2 13053 eqgen 13433 conjsubgen 13484 hmeoopn 14631 hmeocld 14632 hmeontr 14633 hmeoimaf1o 14634 iswomninnlem 15780 |
| Copyright terms: Public domain | W3C validator |