![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > f1of1 | Unicode version |
Description: A one-to-one onto mapping is a one-to-one mapping. (Contributed by NM, 12-Dec-2003.) |
Ref | Expression |
---|---|
f1of1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-f1o 5262 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | simplbi 274 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
This theorem depends on definitions: df-bi 117 df-f1o 5262 |
This theorem is referenced by: f1of 5501 f1sng 5543 f1oresrab 5724 f1ocnvfvrneq 5826 isores3 5859 isoini2 5863 f1oiso 5870 f1opw2 6126 tposf12 6324 enssdom 6818 mapen 6904 ssenen 6909 phplem4 6913 phplem4on 6925 fidceq 6927 en2eqpr 6965 fiintim 6987 f1finf1o 7008 preimaf1ofi 7012 isotilem 7067 inresflem 7121 casefun 7146 endjusym 7157 dju1p1e2 7259 frec2uzled 10503 iseqf1olemnab 10575 iseqf1olemab 10576 iseqf1olemnanb 10577 seqf1oglem1 10593 hashen 10858 hashfacen 10910 negfi 11374 fisumss 11538 fprodssdc 11736 phimullem 12366 eulerthlemh 12372 ctinfom 12588 ssnnctlemct 12606 f1ocpbllem 12896 f1ovscpbl 12898 xpsff1o2 12937 eqgen 13300 conjsubgen 13351 hmeoopn 14490 hmeocld 14491 hmeontr 14492 hmeoimaf1o 14493 iswomninnlem 15609 |
Copyright terms: Public domain | W3C validator |