| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > f1of1 | Unicode version | ||
| Description: A one-to-one onto mapping is a one-to-one mapping. (Contributed by NM, 12-Dec-2003.) | 
| Ref | Expression | 
|---|---|
| f1of1 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-f1o 5265 | 
. 2
 | |
| 2 | 1 | simplbi 274 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 | 
| This theorem depends on definitions: df-bi 117 df-f1o 5265 | 
| This theorem is referenced by: f1of 5504 f1sng 5546 f1oresrab 5727 f1ocnvfvrneq 5829 isores3 5862 isoini2 5866 f1oiso 5873 f1opw2 6129 tposf12 6327 enssdom 6821 mapen 6907 ssenen 6912 phplem4 6916 phplem4on 6928 fidceq 6930 en2eqpr 6968 fiintim 6992 f1finf1o 7013 preimaf1ofi 7017 isotilem 7072 inresflem 7126 casefun 7151 endjusym 7162 dju1p1e2 7264 frec2uzled 10521 iseqf1olemnab 10593 iseqf1olemab 10594 iseqf1olemnanb 10595 seqf1oglem1 10611 hashen 10876 hashfacen 10928 negfi 11393 fisumss 11557 fprodssdc 11755 phimullem 12393 eulerthlemh 12399 ctinfom 12645 ssnnctlemct 12663 f1ocpbllem 12953 f1ovscpbl 12955 xpsff1o2 12994 eqgen 13357 conjsubgen 13408 hmeoopn 14547 hmeocld 14548 hmeontr 14549 hmeoimaf1o 14550 iswomninnlem 15693 | 
| Copyright terms: Public domain | W3C validator |