| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > f1of1 | Unicode version | ||
| Description: A one-to-one onto mapping is a one-to-one mapping. (Contributed by NM, 12-Dec-2003.) |
| Ref | Expression |
|---|---|
| f1of1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-f1o 5279 |
. 2
| |
| 2 | 1 | simplbi 274 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 df-f1o 5279 |
| This theorem is referenced by: f1of 5524 f1sng 5566 f1oresrab 5747 f1ocnvfvrneq 5853 isores3 5886 isoini2 5890 f1oiso 5897 f1opw2 6154 tposf12 6357 enssdom 6855 mapen 6945 ssenen 6950 phplem4 6954 phplem4on 6966 fidceq 6968 en2eqpr 7006 fiintim 7030 f1finf1o 7051 preimaf1ofi 7055 isotilem 7110 inresflem 7164 casefun 7189 endjusym 7200 dju1p1e2 7307 frec2uzled 10576 iseqf1olemnab 10648 iseqf1olemab 10649 iseqf1olemnanb 10650 seqf1oglem1 10666 hashen 10931 hashfacen 10983 negfi 11572 fisumss 11736 fprodssdc 11934 phimullem 12580 eulerthlemh 12586 ctinfom 12832 ssnnctlemct 12850 f1ocpbllem 13175 f1ovscpbl 13177 xpsff1o2 13216 eqgen 13596 conjsubgen 13647 hmeoopn 14816 hmeocld 14817 hmeontr 14818 hmeoimaf1o 14819 iswomninnlem 16025 |
| Copyright terms: Public domain | W3C validator |