| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > f1of1 | Unicode version | ||
| Description: A one-to-one onto mapping is a one-to-one mapping. (Contributed by NM, 12-Dec-2003.) |
| Ref | Expression |
|---|---|
| f1of1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-f1o 5297 |
. 2
| |
| 2 | 1 | simplbi 274 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 df-f1o 5297 |
| This theorem is referenced by: f1of 5544 f1sng 5587 f1oresrab 5768 f1ocnvfvrneq 5874 isores3 5907 isoini2 5911 f1oiso 5918 f1opw2 6175 tposf12 6378 enssdom 6876 mapen 6968 ssenen 6973 phplem4 6977 phplem4on 6990 fidceq 6992 en2eqpr 7030 fiintim 7054 f1finf1o 7075 preimaf1ofi 7079 isotilem 7134 inresflem 7188 casefun 7213 endjusym 7224 pr2cv1 7329 dju1p1e2 7336 frec2uzled 10611 iseqf1olemnab 10683 iseqf1olemab 10684 iseqf1olemnanb 10685 seqf1oglem1 10701 hashen 10966 hashfacen 11018 negfi 11654 fisumss 11818 fprodssdc 12016 phimullem 12662 eulerthlemh 12668 ctinfom 12914 ssnnctlemct 12932 f1ocpbllem 13257 f1ovscpbl 13259 xpsff1o2 13298 eqgen 13678 conjsubgen 13729 hmeoopn 14898 hmeocld 14899 hmeontr 14900 hmeoimaf1o 14901 iswomninnlem 16190 |
| Copyright terms: Public domain | W3C validator |