| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > f1of1 | Unicode version | ||
| Description: A one-to-one onto mapping is a one-to-one mapping. (Contributed by NM, 12-Dec-2003.) |
| Ref | Expression |
|---|---|
| f1of1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-f1o 5278 |
. 2
| |
| 2 | 1 | simplbi 274 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 df-f1o 5278 |
| This theorem is referenced by: f1of 5522 f1sng 5564 f1oresrab 5745 f1ocnvfvrneq 5851 isores3 5884 isoini2 5888 f1oiso 5895 f1opw2 6152 tposf12 6355 enssdom 6853 mapen 6943 ssenen 6948 phplem4 6952 phplem4on 6964 fidceq 6966 en2eqpr 7004 fiintim 7028 f1finf1o 7049 preimaf1ofi 7053 isotilem 7108 inresflem 7162 casefun 7187 endjusym 7198 dju1p1e2 7305 frec2uzled 10574 iseqf1olemnab 10646 iseqf1olemab 10647 iseqf1olemnanb 10648 seqf1oglem1 10664 hashen 10929 hashfacen 10981 negfi 11539 fisumss 11703 fprodssdc 11901 phimullem 12547 eulerthlemh 12553 ctinfom 12799 ssnnctlemct 12817 f1ocpbllem 13142 f1ovscpbl 13144 xpsff1o2 13183 eqgen 13563 conjsubgen 13614 hmeoopn 14783 hmeocld 14784 hmeontr 14785 hmeoimaf1o 14786 iswomninnlem 15988 |
| Copyright terms: Public domain | W3C validator |