| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > f1of1 | Unicode version | ||
| Description: A one-to-one onto mapping is a one-to-one mapping. (Contributed by NM, 12-Dec-2003.) |
| Ref | Expression |
|---|---|
| f1of1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-f1o 5325 |
. 2
| |
| 2 | 1 | simplbi 274 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 df-f1o 5325 |
| This theorem is referenced by: f1of 5572 f1sng 5615 f1oresrab 5800 f1ocnvfvrneq 5906 isores3 5939 isoini2 5943 f1oiso 5950 f1opw2 6212 tposf12 6415 enssdom 6913 mapen 7007 ssenen 7012 phplem4 7016 phplem4on 7029 fidceq 7031 en2eqpr 7069 fiintim 7093 f1finf1o 7114 preimaf1ofi 7118 isotilem 7173 inresflem 7227 casefun 7252 endjusym 7263 pr2cv1 7368 dju1p1e2 7375 frec2uzled 10651 iseqf1olemnab 10723 iseqf1olemab 10724 iseqf1olemnanb 10725 seqf1oglem1 10741 hashen 11006 hashfacen 11058 negfi 11739 fisumss 11903 fprodssdc 12101 phimullem 12747 eulerthlemh 12753 ctinfom 12999 ssnnctlemct 13017 f1ocpbllem 13343 f1ovscpbl 13345 xpsff1o2 13384 eqgen 13764 conjsubgen 13815 hmeoopn 14985 hmeocld 14986 hmeontr 14987 hmeoimaf1o 14988 usgrf1 15973 uspgr2wlkeq 16076 iswomninnlem 16417 |
| Copyright terms: Public domain | W3C validator |