| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > resoprab | Unicode version | ||
| Description: Restriction of an operation class abstraction. (Contributed by NM, 10-Feb-2007.) |
| Ref | Expression |
|---|---|
| resoprab |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resopab 5003 |
. . 3
| |
| 2 | 19.42vv 1935 |
. . . . 5
| |
| 3 | an12 561 |
. . . . . . 7
| |
| 4 | eleq1 2268 |
. . . . . . . . . 10
| |
| 5 | opelxp 4705 |
. . . . . . . . . 10
| |
| 6 | 4, 5 | bitrdi 196 |
. . . . . . . . 9
|
| 7 | 6 | anbi1d 465 |
. . . . . . . 8
|
| 8 | 7 | pm5.32i 454 |
. . . . . . 7
|
| 9 | 3, 8 | bitri 184 |
. . . . . 6
|
| 10 | 9 | 2exbii 1629 |
. . . . 5
|
| 11 | 2, 10 | bitr3i 186 |
. . . 4
|
| 12 | 11 | opabbii 4111 |
. . 3
|
| 13 | 1, 12 | eqtri 2226 |
. 2
|
| 14 | dfoprab2 5992 |
. . 3
| |
| 15 | 14 | reseq1i 4955 |
. 2
|
| 16 | dfoprab2 5992 |
. 2
| |
| 17 | 13, 15, 16 | 3eqtr4i 2236 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-opab 4106 df-xp 4681 df-rel 4682 df-res 4687 df-oprab 5948 |
| This theorem is referenced by: resoprab2 6042 |
| Copyright terms: Public domain | W3C validator |