Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > resoprab | Unicode version |
Description: Restriction of an operation class abstraction. (Contributed by NM, 10-Feb-2007.) |
Ref | Expression |
---|---|
resoprab |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resopab 4928 | . . 3 | |
2 | 19.42vv 1899 | . . . . 5 | |
3 | an12 551 | . . . . . . 7 | |
4 | eleq1 2229 | . . . . . . . . . 10 | |
5 | opelxp 4634 | . . . . . . . . . 10 | |
6 | 4, 5 | bitrdi 195 | . . . . . . . . 9 |
7 | 6 | anbi1d 461 | . . . . . . . 8 |
8 | 7 | pm5.32i 450 | . . . . . . 7 |
9 | 3, 8 | bitri 183 | . . . . . 6 |
10 | 9 | 2exbii 1594 | . . . . 5 |
11 | 2, 10 | bitr3i 185 | . . . 4 |
12 | 11 | opabbii 4049 | . . 3 |
13 | 1, 12 | eqtri 2186 | . 2 |
14 | dfoprab2 5889 | . . 3 | |
15 | 14 | reseq1i 4880 | . 2 |
16 | dfoprab2 5889 | . 2 | |
17 | 13, 15, 16 | 3eqtr4i 2196 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wceq 1343 wex 1480 wcel 2136 cop 3579 copab 4042 cxp 4602 cres 4606 coprab 5843 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-opab 4044 df-xp 4610 df-rel 4611 df-res 4616 df-oprab 5846 |
This theorem is referenced by: resoprab2 5939 |
Copyright terms: Public domain | W3C validator |