ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resoprab Unicode version

Theorem resoprab 6022
Description: Restriction of an operation class abstraction. (Contributed by NM, 10-Feb-2007.)
Assertion
Ref Expression
resoprab  |-  ( {
<. <. x ,  y
>. ,  z >.  | 
ph }  |`  ( A  X.  B ) )  =  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  ph ) }
Distinct variable groups:    x, y, z, A    x, B, y, z
Allowed substitution hints:    ph( x, y, z)

Proof of Theorem resoprab
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 resopab 4991 . . 3  |-  ( {
<. w ,  z >.  |  E. x E. y
( w  =  <. x ,  y >.  /\  ph ) }  |`  ( A  X.  B ) )  =  { <. w ,  z >.  |  ( w  e.  ( A  X.  B )  /\  E. x E. y ( w  =  <. x ,  y >.  /\  ph ) ) }
2 19.42vv 1926 . . . . 5  |-  ( E. x E. y ( w  e.  ( A  X.  B )  /\  ( w  =  <. x ,  y >.  /\  ph ) )  <->  ( w  e.  ( A  X.  B
)  /\  E. x E. y ( w  = 
<. x ,  y >.  /\  ph ) ) )
3 an12 561 . . . . . . 7  |-  ( ( w  e.  ( A  X.  B )  /\  ( w  =  <. x ,  y >.  /\  ph ) )  <->  ( w  =  <. x ,  y
>.  /\  ( w  e.  ( A  X.  B
)  /\  ph ) ) )
4 eleq1 2259 . . . . . . . . . 10  |-  ( w  =  <. x ,  y
>.  ->  ( w  e.  ( A  X.  B
)  <->  <. x ,  y
>.  e.  ( A  X.  B ) ) )
5 opelxp 4694 . . . . . . . . . 10  |-  ( <.
x ,  y >.  e.  ( A  X.  B
)  <->  ( x  e.  A  /\  y  e.  B ) )
64, 5bitrdi 196 . . . . . . . . 9  |-  ( w  =  <. x ,  y
>.  ->  ( w  e.  ( A  X.  B
)  <->  ( x  e.  A  /\  y  e.  B ) ) )
76anbi1d 465 . . . . . . . 8  |-  ( w  =  <. x ,  y
>.  ->  ( ( w  e.  ( A  X.  B )  /\  ph ) 
<->  ( ( x  e.  A  /\  y  e.  B )  /\  ph ) ) )
87pm5.32i 454 . . . . . . 7  |-  ( ( w  =  <. x ,  y >.  /\  (
w  e.  ( A  X.  B )  /\  ph ) )  <->  ( w  =  <. x ,  y
>.  /\  ( ( x  e.  A  /\  y  e.  B )  /\  ph ) ) )
93, 8bitri 184 . . . . . 6  |-  ( ( w  e.  ( A  X.  B )  /\  ( w  =  <. x ,  y >.  /\  ph ) )  <->  ( w  =  <. x ,  y
>.  /\  ( ( x  e.  A  /\  y  e.  B )  /\  ph ) ) )
1092exbii 1620 . . . . 5  |-  ( E. x E. y ( w  e.  ( A  X.  B )  /\  ( w  =  <. x ,  y >.  /\  ph ) )  <->  E. x E. y ( w  = 
<. x ,  y >.  /\  ( ( x  e.  A  /\  y  e.  B )  /\  ph ) ) )
112, 10bitr3i 186 . . . 4  |-  ( ( w  e.  ( A  X.  B )  /\  E. x E. y ( w  =  <. x ,  y >.  /\  ph ) )  <->  E. x E. y ( w  = 
<. x ,  y >.  /\  ( ( x  e.  A  /\  y  e.  B )  /\  ph ) ) )
1211opabbii 4101 . . 3  |-  { <. w ,  z >.  |  ( w  e.  ( A  X.  B )  /\  E. x E. y ( w  =  <. x ,  y >.  /\  ph ) ) }  =  { <. w ,  z
>.  |  E. x E. y ( w  = 
<. x ,  y >.  /\  ( ( x  e.  A  /\  y  e.  B )  /\  ph ) ) }
131, 12eqtri 2217 . 2  |-  ( {
<. w ,  z >.  |  E. x E. y
( w  =  <. x ,  y >.  /\  ph ) }  |`  ( A  X.  B ) )  =  { <. w ,  z >.  |  E. x E. y ( w  =  <. x ,  y
>.  /\  ( ( x  e.  A  /\  y  e.  B )  /\  ph ) ) }
14 dfoprab2 5973 . . 3  |-  { <. <.
x ,  y >. ,  z >.  |  ph }  =  { <. w ,  z >.  |  E. x E. y ( w  =  <. x ,  y
>.  /\  ph ) }
1514reseq1i 4943 . 2  |-  ( {
<. <. x ,  y
>. ,  z >.  | 
ph }  |`  ( A  X.  B ) )  =  ( { <. w ,  z >.  |  E. x E. y ( w  =  <. x ,  y
>.  /\  ph ) }  |`  ( A  X.  B
) )
16 dfoprab2 5973 . 2  |-  { <. <.
x ,  y >. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B
)  /\  ph ) }  =  { <. w ,  z >.  |  E. x E. y ( w  =  <. x ,  y
>.  /\  ( ( x  e.  A  /\  y  e.  B )  /\  ph ) ) }
1713, 15, 163eqtr4i 2227 1  |-  ( {
<. <. x ,  y
>. ,  z >.  | 
ph }  |`  ( A  X.  B ) )  =  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  ph ) }
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1364   E.wex 1506    e. wcel 2167   <.cop 3626   {copab 4094    X. cxp 4662    |` cres 4666   {coprab 5926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-opab 4096  df-xp 4670  df-rel 4671  df-res 4676  df-oprab 5929
This theorem is referenced by:  resoprab2  6023
  Copyright terms: Public domain W3C validator