ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fmpt2d Unicode version

Theorem fmpt2d 5460
Description: Domain and codomain of the mapping operation; deduction form. (Contributed by NM, 27-Dec-2014.)
Hypotheses
Ref Expression
fmpt2d.2  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
fmpt2d.1  |-  ( ph  ->  F  =  ( x  e.  A  |->  B ) )
fmpt2d.3  |-  ( (
ph  /\  y  e.  A )  ->  ( F `  y )  e.  C )
Assertion
Ref Expression
fmpt2d  |-  ( ph  ->  F : A --> C )
Distinct variable groups:    x, A    y, A    y, C    y, F    ph, x    ph, y
Allowed substitution hints:    B( x, y)    C( x)    F( x)    V( x, y)

Proof of Theorem fmpt2d
StepHypRef Expression
1 fmpt2d.2 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
21ralrimiva 2446 . . . 4  |-  ( ph  ->  A. x  e.  A  B  e.  V )
3 eqid 2088 . . . . 5  |-  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  B )
43fnmpt 5140 . . . 4  |-  ( A. x  e.  A  B  e.  V  ->  ( x  e.  A  |->  B )  Fn  A )
52, 4syl 14 . . 3  |-  ( ph  ->  ( x  e.  A  |->  B )  Fn  A
)
6 fmpt2d.1 . . . 4  |-  ( ph  ->  F  =  ( x  e.  A  |->  B ) )
76fneq1d 5104 . . 3  |-  ( ph  ->  ( F  Fn  A  <->  ( x  e.  A  |->  B )  Fn  A ) )
85, 7mpbird 165 . 2  |-  ( ph  ->  F  Fn  A )
9 fmpt2d.3 . . 3  |-  ( (
ph  /\  y  e.  A )  ->  ( F `  y )  e.  C )
109ralrimiva 2446 . 2  |-  ( ph  ->  A. y  e.  A  ( F `  y )  e.  C )
11 ffnfv 5456 . 2  |-  ( F : A --> C  <->  ( F  Fn  A  /\  A. y  e.  A  ( F `  y )  e.  C
) )
128, 10, 11sylanbrc 408 1  |-  ( ph  ->  F : A --> C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1289    e. wcel 1438   A.wral 2359    |-> cmpt 3899    Fn wfn 5010   -->wf 5011   ` cfv 5015
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3957  ax-pow 4009  ax-pr 4036
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-rex 2365  df-v 2621  df-sbc 2841  df-un 3003  df-in 3005  df-ss 3012  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-br 3846  df-opab 3900  df-mpt 3901  df-id 4120  df-xp 4444  df-rel 4445  df-cnv 4446  df-co 4447  df-dm 4448  df-rn 4449  df-iota 4980  df-fun 5017  df-fn 5018  df-f 5019  df-fv 5023
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator