ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fmpt2d GIF version

Theorem fmpt2d 5647
Description: Domain and codomain of the mapping operation; deduction form. (Contributed by NM, 27-Dec-2014.)
Hypotheses
Ref Expression
fmpt2d.2 ((𝜑𝑥𝐴) → 𝐵𝑉)
fmpt2d.1 (𝜑𝐹 = (𝑥𝐴𝐵))
fmpt2d.3 ((𝜑𝑦𝐴) → (𝐹𝑦) ∈ 𝐶)
Assertion
Ref Expression
fmpt2d (𝜑𝐹:𝐴𝐶)
Distinct variable groups:   𝑥,𝐴   𝑦,𝐴   𝑦,𝐶   𝑦,𝐹   𝜑,𝑥   𝜑,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦)   𝐶(𝑥)   𝐹(𝑥)   𝑉(𝑥,𝑦)

Proof of Theorem fmpt2d
StepHypRef Expression
1 fmpt2d.2 . . . . 5 ((𝜑𝑥𝐴) → 𝐵𝑉)
21ralrimiva 2539 . . . 4 (𝜑 → ∀𝑥𝐴 𝐵𝑉)
3 eqid 2165 . . . . 5 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
43fnmpt 5314 . . . 4 (∀𝑥𝐴 𝐵𝑉 → (𝑥𝐴𝐵) Fn 𝐴)
52, 4syl 14 . . 3 (𝜑 → (𝑥𝐴𝐵) Fn 𝐴)
6 fmpt2d.1 . . . 4 (𝜑𝐹 = (𝑥𝐴𝐵))
76fneq1d 5278 . . 3 (𝜑 → (𝐹 Fn 𝐴 ↔ (𝑥𝐴𝐵) Fn 𝐴))
85, 7mpbird 166 . 2 (𝜑𝐹 Fn 𝐴)
9 fmpt2d.3 . . 3 ((𝜑𝑦𝐴) → (𝐹𝑦) ∈ 𝐶)
109ralrimiva 2539 . 2 (𝜑 → ∀𝑦𝐴 (𝐹𝑦) ∈ 𝐶)
11 ffnfv 5643 . 2 (𝐹:𝐴𝐶 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐹𝑦) ∈ 𝐶))
128, 10, 11sylanbrc 414 1 (𝜑𝐹:𝐴𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1343  wcel 2136  wral 2444  cmpt 4043   Fn wfn 5183  wf 5184  cfv 5188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator