ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fntopon Unicode version

Theorem fntopon 13091
Description: The class TopOn is a function with domain  _V. (Contributed by BJ, 29-Apr-2021.)
Assertion
Ref Expression
fntopon  |- TopOn  Fn  _V

Proof of Theorem fntopon
StepHypRef Expression
1 funtopon 13079 . 2  |-  Fun TopOn
2 dmtopon 13090 . 2  |-  dom TopOn  =  _V
3 df-fn 5211 . 2  |-  (TopOn  Fn  _V 
<->  ( Fun TopOn  /\  dom TopOn  =  _V ) )
41, 2, 3mpbir2an 942 1  |- TopOn  Fn  _V
Colors of variables: wff set class
Syntax hints:    = wceq 1353   _Vcvv 2735   dom cdm 4620   Fun wfun 5202    Fn wfn 5203  TopOnctopon 13077
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-rab 2462  df-v 2737  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-fun 5210  df-fn 5211  df-topon 13078
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator