| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > toponmax | Unicode version | ||
| Description: The base set of a topology is an open set. (Contributed by Mario Carneiro, 13-Aug-2015.) |
| Ref | Expression |
|---|---|
| toponmax |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | toponuni 14487 |
. 2
| |
| 2 | topontop 14486 |
. . 3
| |
| 3 | eqid 2205 |
. . . 4
| |
| 4 | 3 | topopn 14480 |
. . 3
|
| 5 | 2, 4 | syl 14 |
. 2
|
| 6 | 1, 5 | eqeltrd 2282 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-sbc 2999 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-iota 5232 df-fun 5273 df-fv 5279 df-top 14470 df-topon 14483 |
| This theorem is referenced by: topgele 14501 eltpsg 14512 resttopon 14643 lmfval 14664 cnfval 14666 cnpfval 14667 iscn 14669 cnpval 14670 iscnp 14671 lmbrf 14687 cnconst2 14705 cnrest2 14708 cndis 14713 cnpdis 14714 lmfss 14716 lmres 14720 lmff 14721 tx1cn 14741 tx2cn 14742 txlm 14751 cnmpt2res 14769 mopnm 14920 isxms2 14924 |
| Copyright terms: Public domain | W3C validator |