ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  toponmax Unicode version

Theorem toponmax 14693
Description: The base set of a topology is an open set. (Contributed by Mario Carneiro, 13-Aug-2015.)
Assertion
Ref Expression
toponmax  |-  ( J  e.  (TopOn `  B
)  ->  B  e.  J )

Proof of Theorem toponmax
StepHypRef Expression
1 toponuni 14683 . 2  |-  ( J  e.  (TopOn `  B
)  ->  B  =  U. J )
2 topontop 14682 . . 3  |-  ( J  e.  (TopOn `  B
)  ->  J  e.  Top )
3 eqid 2229 . . . 4  |-  U. J  =  U. J
43topopn 14676 . . 3  |-  ( J  e.  Top  ->  U. J  e.  J )
52, 4syl 14 . 2  |-  ( J  e.  (TopOn `  B
)  ->  U. J  e.  J )
61, 5eqeltrd 2306 1  |-  ( J  e.  (TopOn `  B
)  ->  B  e.  J )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2200   U.cuni 3887   ` cfv 5317   Topctop 14665  TopOnctopon 14678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-iota 5277  df-fun 5319  df-fv 5325  df-top 14666  df-topon 14679
This theorem is referenced by:  topgele  14697  eltpsg  14708  resttopon  14839  lmfval  14860  cnfval  14862  cnpfval  14863  iscn  14865  cnpval  14866  iscnp  14867  lmbrf  14883  cnconst2  14901  cnrest2  14904  cndis  14909  cnpdis  14910  lmfss  14912  lmres  14916  lmff  14917  tx1cn  14937  tx2cn  14938  txlm  14947  cnmpt2res  14965  mopnm  15116  isxms2  15120
  Copyright terms: Public domain W3C validator