ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  toponmax Unicode version

Theorem toponmax 14468
Description: The base set of a topology is an open set. (Contributed by Mario Carneiro, 13-Aug-2015.)
Assertion
Ref Expression
toponmax  |-  ( J  e.  (TopOn `  B
)  ->  B  e.  J )

Proof of Theorem toponmax
StepHypRef Expression
1 toponuni 14458 . 2  |-  ( J  e.  (TopOn `  B
)  ->  B  =  U. J )
2 topontop 14457 . . 3  |-  ( J  e.  (TopOn `  B
)  ->  J  e.  Top )
3 eqid 2204 . . . 4  |-  U. J  =  U. J
43topopn 14451 . . 3  |-  ( J  e.  Top  ->  U. J  e.  J )
52, 4syl 14 . 2  |-  ( J  e.  (TopOn `  B
)  ->  U. J  e.  J )
61, 5eqeltrd 2281 1  |-  ( J  e.  (TopOn `  B
)  ->  B  e.  J )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2175   U.cuni 3849   ` cfv 5270   Topctop 14440  TopOnctopon 14453
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-rab 2492  df-v 2773  df-sbc 2998  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-iota 5231  df-fun 5272  df-fv 5278  df-top 14441  df-topon 14454
This theorem is referenced by:  topgele  14472  eltpsg  14483  resttopon  14614  lmfval  14635  cnfval  14637  cnpfval  14638  iscn  14640  cnpval  14641  iscnp  14642  lmbrf  14658  cnconst2  14676  cnrest2  14679  cndis  14684  cnpdis  14685  lmfss  14687  lmres  14691  lmff  14692  tx1cn  14712  tx2cn  14713  txlm  14722  cnmpt2res  14740  mopnm  14891  isxms2  14895
  Copyright terms: Public domain W3C validator