| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > toponmax | Unicode version | ||
| Description: The base set of a topology is an open set. (Contributed by Mario Carneiro, 13-Aug-2015.) |
| Ref | Expression |
|---|---|
| toponmax |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | toponuni 14458 |
. 2
| |
| 2 | topontop 14457 |
. . 3
| |
| 3 | eqid 2204 |
. . . 4
| |
| 4 | 3 | topopn 14451 |
. . 3
|
| 5 | 2, 4 | syl 14 |
. 2
|
| 6 | 1, 5 | eqeltrd 2281 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-rab 2492 df-v 2773 df-sbc 2998 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-iota 5231 df-fun 5272 df-fv 5278 df-top 14441 df-topon 14454 |
| This theorem is referenced by: topgele 14472 eltpsg 14483 resttopon 14614 lmfval 14635 cnfval 14637 cnpfval 14638 iscn 14640 cnpval 14641 iscnp 14642 lmbrf 14658 cnconst2 14676 cnrest2 14679 cndis 14684 cnpdis 14685 lmfss 14687 lmres 14691 lmff 14692 tx1cn 14712 tx2cn 14713 txlm 14722 cnmpt2res 14740 mopnm 14891 isxms2 14895 |
| Copyright terms: Public domain | W3C validator |