ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  toponmax Unicode version

Theorem toponmax 14497
Description: The base set of a topology is an open set. (Contributed by Mario Carneiro, 13-Aug-2015.)
Assertion
Ref Expression
toponmax  |-  ( J  e.  (TopOn `  B
)  ->  B  e.  J )

Proof of Theorem toponmax
StepHypRef Expression
1 toponuni 14487 . 2  |-  ( J  e.  (TopOn `  B
)  ->  B  =  U. J )
2 topontop 14486 . . 3  |-  ( J  e.  (TopOn `  B
)  ->  J  e.  Top )
3 eqid 2205 . . . 4  |-  U. J  =  U. J
43topopn 14480 . . 3  |-  ( J  e.  Top  ->  U. J  e.  J )
52, 4syl 14 . 2  |-  ( J  e.  (TopOn `  B
)  ->  U. J  e.  J )
61, 5eqeltrd 2282 1  |-  ( J  e.  (TopOn `  B
)  ->  B  e.  J )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2176   U.cuni 3850   ` cfv 5271   Topctop 14469  TopOnctopon 14482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-iota 5232  df-fun 5273  df-fv 5279  df-top 14470  df-topon 14483
This theorem is referenced by:  topgele  14501  eltpsg  14512  resttopon  14643  lmfval  14664  cnfval  14666  cnpfval  14667  iscn  14669  cnpval  14670  iscnp  14671  lmbrf  14687  cnconst2  14705  cnrest2  14708  cndis  14713  cnpdis  14714  lmfss  14716  lmres  14720  lmff  14721  tx1cn  14741  tx2cn  14742  txlm  14751  cnmpt2res  14769  mopnm  14920  isxms2  14924
  Copyright terms: Public domain W3C validator