| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > toponmax | Unicode version | ||
| Description: The base set of a topology is an open set. (Contributed by Mario Carneiro, 13-Aug-2015.) |
| Ref | Expression |
|---|---|
| toponmax |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | toponuni 14683 |
. 2
| |
| 2 | topontop 14682 |
. . 3
| |
| 3 | eqid 2229 |
. . . 4
| |
| 4 | 3 | topopn 14676 |
. . 3
|
| 5 | 2, 4 | syl 14 |
. 2
|
| 6 | 1, 5 | eqeltrd 2306 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-iota 5277 df-fun 5319 df-fv 5325 df-top 14666 df-topon 14679 |
| This theorem is referenced by: topgele 14697 eltpsg 14708 resttopon 14839 lmfval 14860 cnfval 14862 cnpfval 14863 iscn 14865 cnpval 14866 iscnp 14867 lmbrf 14883 cnconst2 14901 cnrest2 14904 cndis 14909 cnpdis 14910 lmfss 14912 lmres 14916 lmff 14917 tx1cn 14937 tx2cn 14938 txlm 14947 cnmpt2res 14965 mopnm 15116 isxms2 15120 |
| Copyright terms: Public domain | W3C validator |