| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fntp | GIF version | ||
| Description: A function with a domain of three elements. (Contributed by NM, 14-Sep-2011.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| fntp.1 | ⊢ 𝐴 ∈ V |
| fntp.2 | ⊢ 𝐵 ∈ V |
| fntp.3 | ⊢ 𝐶 ∈ V |
| fntp.4 | ⊢ 𝐷 ∈ V |
| fntp.5 | ⊢ 𝐸 ∈ V |
| fntp.6 | ⊢ 𝐹 ∈ V |
| Ref | Expression |
|---|---|
| fntp | ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → {〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉} Fn {𝐴, 𝐵, 𝐶}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fntp.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 2 | fntp.2 | . . 3 ⊢ 𝐵 ∈ V | |
| 3 | fntp.3 | . . 3 ⊢ 𝐶 ∈ V | |
| 4 | fntp.4 | . . 3 ⊢ 𝐷 ∈ V | |
| 5 | fntp.5 | . . 3 ⊢ 𝐸 ∈ V | |
| 6 | fntp.6 | . . 3 ⊢ 𝐹 ∈ V | |
| 7 | 1, 2, 3, 4, 5, 6 | funtp 5312 | . 2 ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → Fun {〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉}) |
| 8 | 4, 5, 6 | dmtpop 5146 | . . 3 ⊢ dom {〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉} = {𝐴, 𝐵, 𝐶} |
| 9 | 8 | a1i 9 | . 2 ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → dom {〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉} = {𝐴, 𝐵, 𝐶}) |
| 10 | df-fn 5262 | . 2 ⊢ ({〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉} Fn {𝐴, 𝐵, 𝐶} ↔ (Fun {〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉} ∧ dom {〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉} = {𝐴, 𝐵, 𝐶})) | |
| 11 | 7, 9, 10 | sylanbrc 417 | 1 ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → {〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉} Fn {𝐴, 𝐵, 𝐶}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 980 = wceq 1364 ∈ wcel 2167 ≠ wne 2367 Vcvv 2763 {ctp 3625 〈cop 3626 dom cdm 4664 Fun wfun 5253 Fn wfn 5254 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-tp 3631 df-op 3632 df-br 4035 df-opab 4096 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-fun 5261 df-fn 5262 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |