ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fntp GIF version

Theorem fntp 5255
Description: A function with a domain of three elements. (Contributed by NM, 14-Sep-2011.) (Revised by Mario Carneiro, 26-Apr-2015.)
Hypotheses
Ref Expression
fntp.1 𝐴 ∈ V
fntp.2 𝐵 ∈ V
fntp.3 𝐶 ∈ V
fntp.4 𝐷 ∈ V
fntp.5 𝐸 ∈ V
fntp.6 𝐹 ∈ V
Assertion
Ref Expression
fntp ((𝐴𝐵𝐴𝐶𝐵𝐶) → {⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩} Fn {𝐴, 𝐵, 𝐶})

Proof of Theorem fntp
StepHypRef Expression
1 fntp.1 . . 3 𝐴 ∈ V
2 fntp.2 . . 3 𝐵 ∈ V
3 fntp.3 . . 3 𝐶 ∈ V
4 fntp.4 . . 3 𝐷 ∈ V
5 fntp.5 . . 3 𝐸 ∈ V
6 fntp.6 . . 3 𝐹 ∈ V
71, 2, 3, 4, 5, 6funtp 5251 . 2 ((𝐴𝐵𝐴𝐶𝐵𝐶) → Fun {⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩})
84, 5, 6dmtpop 5086 . . 3 dom {⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩} = {𝐴, 𝐵, 𝐶}
98a1i 9 . 2 ((𝐴𝐵𝐴𝐶𝐵𝐶) → dom {⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩} = {𝐴, 𝐵, 𝐶})
10 df-fn 5201 . 2 ({⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩} Fn {𝐴, 𝐵, 𝐶} ↔ (Fun {⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩} ∧ dom {⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩} = {𝐴, 𝐵, 𝐶}))
117, 9, 10sylanbrc 415 1 ((𝐴𝐵𝐴𝐶𝐵𝐶) → {⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩} Fn {𝐴, 𝐵, 𝐶})
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 973   = wceq 1348  wcel 2141  wne 2340  Vcvv 2730  {ctp 3585  cop 3586  dom cdm 4611  Fun wfun 5192   Fn wfn 5193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-tp 3591  df-op 3592  df-br 3990  df-opab 4051  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-fun 5200  df-fn 5201
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator