![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fntp | GIF version |
Description: A function with a domain of three elements. (Contributed by NM, 14-Sep-2011.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
fntp.1 | ⊢ 𝐴 ∈ V |
fntp.2 | ⊢ 𝐵 ∈ V |
fntp.3 | ⊢ 𝐶 ∈ V |
fntp.4 | ⊢ 𝐷 ∈ V |
fntp.5 | ⊢ 𝐸 ∈ V |
fntp.6 | ⊢ 𝐹 ∈ V |
Ref | Expression |
---|---|
fntp | ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → {⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩} Fn {𝐴, 𝐵, 𝐶}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fntp.1 | . . 3 ⊢ 𝐴 ∈ V | |
2 | fntp.2 | . . 3 ⊢ 𝐵 ∈ V | |
3 | fntp.3 | . . 3 ⊢ 𝐶 ∈ V | |
4 | fntp.4 | . . 3 ⊢ 𝐷 ∈ V | |
5 | fntp.5 | . . 3 ⊢ 𝐸 ∈ V | |
6 | fntp.6 | . . 3 ⊢ 𝐹 ∈ V | |
7 | 1, 2, 3, 4, 5, 6 | funtp 5270 | . 2 ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → Fun {⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩}) |
8 | 4, 5, 6 | dmtpop 5105 | . . 3 ⊢ dom {⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩} = {𝐴, 𝐵, 𝐶} |
9 | 8 | a1i 9 | . 2 ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → dom {⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩} = {𝐴, 𝐵, 𝐶}) |
10 | df-fn 5220 | . 2 ⊢ ({⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩} Fn {𝐴, 𝐵, 𝐶} ↔ (Fun {⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩} ∧ dom {⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩} = {𝐴, 𝐵, 𝐶})) | |
11 | 7, 9, 10 | sylanbrc 417 | 1 ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → {⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩} Fn {𝐴, 𝐵, 𝐶}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 978 = wceq 1353 ∈ wcel 2148 ≠ wne 2347 Vcvv 2738 {ctp 3595 ⟨cop 3596 dom cdm 4627 Fun wfun 5211 Fn wfn 5212 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4122 ax-pow 4175 ax-pr 4210 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-v 2740 df-dif 3132 df-un 3134 df-in 3136 df-ss 3143 df-nul 3424 df-pw 3578 df-sn 3599 df-pr 3600 df-tp 3601 df-op 3602 df-br 4005 df-opab 4066 df-id 4294 df-xp 4633 df-rel 4634 df-cnv 4635 df-co 4636 df-dm 4637 df-fun 5219 df-fn 5220 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |