ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fntp GIF version

Theorem fntp 5336
Description: A function with a domain of three elements. (Contributed by NM, 14-Sep-2011.) (Revised by Mario Carneiro, 26-Apr-2015.)
Hypotheses
Ref Expression
fntp.1 𝐴 ∈ V
fntp.2 𝐵 ∈ V
fntp.3 𝐶 ∈ V
fntp.4 𝐷 ∈ V
fntp.5 𝐸 ∈ V
fntp.6 𝐹 ∈ V
Assertion
Ref Expression
fntp ((𝐴𝐵𝐴𝐶𝐵𝐶) → {⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩} Fn {𝐴, 𝐵, 𝐶})

Proof of Theorem fntp
StepHypRef Expression
1 fntp.1 . . 3 𝐴 ∈ V
2 fntp.2 . . 3 𝐵 ∈ V
3 fntp.3 . . 3 𝐶 ∈ V
4 fntp.4 . . 3 𝐷 ∈ V
5 fntp.5 . . 3 𝐸 ∈ V
6 fntp.6 . . 3 𝐹 ∈ V
71, 2, 3, 4, 5, 6funtp 5332 . 2 ((𝐴𝐵𝐴𝐶𝐵𝐶) → Fun {⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩})
84, 5, 6dmtpop 5163 . . 3 dom {⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩} = {𝐴, 𝐵, 𝐶}
98a1i 9 . 2 ((𝐴𝐵𝐴𝐶𝐵𝐶) → dom {⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩} = {𝐴, 𝐵, 𝐶})
10 df-fn 5279 . 2 ({⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩} Fn {𝐴, 𝐵, 𝐶} ↔ (Fun {⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩} ∧ dom {⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩} = {𝐴, 𝐵, 𝐶}))
117, 9, 10sylanbrc 417 1 ((𝐴𝐵𝐴𝐶𝐵𝐶) → {⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩} Fn {𝐴, 𝐵, 𝐶})
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 981   = wceq 1373  wcel 2177  wne 2377  Vcvv 2773  {ctp 3636  cop 3637  dom cdm 4679  Fun wfun 5270   Fn wfn 5271
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-pow 4222  ax-pr 4257
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-v 2775  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-pw 3619  df-sn 3640  df-pr 3641  df-tp 3642  df-op 3643  df-br 4048  df-opab 4110  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-fun 5278  df-fn 5279
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator