Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fntp | GIF version |
Description: A function with a domain of three elements. (Contributed by NM, 14-Sep-2011.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
fntp.1 | ⊢ 𝐴 ∈ V |
fntp.2 | ⊢ 𝐵 ∈ V |
fntp.3 | ⊢ 𝐶 ∈ V |
fntp.4 | ⊢ 𝐷 ∈ V |
fntp.5 | ⊢ 𝐸 ∈ V |
fntp.6 | ⊢ 𝐹 ∈ V |
Ref | Expression |
---|---|
fntp | ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → {〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉} Fn {𝐴, 𝐵, 𝐶}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fntp.1 | . . 3 ⊢ 𝐴 ∈ V | |
2 | fntp.2 | . . 3 ⊢ 𝐵 ∈ V | |
3 | fntp.3 | . . 3 ⊢ 𝐶 ∈ V | |
4 | fntp.4 | . . 3 ⊢ 𝐷 ∈ V | |
5 | fntp.5 | . . 3 ⊢ 𝐸 ∈ V | |
6 | fntp.6 | . . 3 ⊢ 𝐹 ∈ V | |
7 | 1, 2, 3, 4, 5, 6 | funtp 5251 | . 2 ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → Fun {〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉}) |
8 | 4, 5, 6 | dmtpop 5086 | . . 3 ⊢ dom {〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉} = {𝐴, 𝐵, 𝐶} |
9 | 8 | a1i 9 | . 2 ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → dom {〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉} = {𝐴, 𝐵, 𝐶}) |
10 | df-fn 5201 | . 2 ⊢ ({〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉} Fn {𝐴, 𝐵, 𝐶} ↔ (Fun {〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉} ∧ dom {〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉} = {𝐴, 𝐵, 𝐶})) | |
11 | 7, 9, 10 | sylanbrc 415 | 1 ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) → {〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉} Fn {𝐴, 𝐵, 𝐶}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 973 = wceq 1348 ∈ wcel 2141 ≠ wne 2340 Vcvv 2730 {ctp 3585 〈cop 3586 dom cdm 4611 Fun wfun 5192 Fn wfn 5193 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-tp 3591 df-op 3592 df-br 3990 df-opab 4051 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-fun 5200 df-fn 5201 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |