ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fun0 Unicode version

Theorem fun0 5312
Description: The empty set is a function. Theorem 10.3 of [Quine] p. 65. (Contributed by NM, 7-Apr-1998.)
Assertion
Ref Expression
fun0  |-  Fun  (/)

Proof of Theorem fun0
StepHypRef Expression
1 0ss 3485 . 2  |-  (/)  C_  { <. (/)
,  (/) >. }
2 0ex 4156 . . 3  |-  (/)  e.  _V
32, 2funsn 5302 . 2  |-  Fun  { <.
(/) ,  (/) >. }
4 funss 5273 . 2  |-  ( (/)  C_ 
{ <. (/) ,  (/) >. }  ->  ( Fun  { <. (/) ,  (/) >. }  ->  Fun  (/) ) )
51, 3, 4mp2 16 1  |-  Fun  (/)
Colors of variables: wff set class
Syntax hints:    C_ wss 3153   (/)c0 3446   {csn 3618   <.cop 3621   Fun wfun 5248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-fun 5256
This theorem is referenced by:  fn0  5373  f10  5534  ennnfonelemj0  12558
  Copyright terms: Public domain W3C validator