ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fococnv2 GIF version

Theorem fococnv2 5458
Description: The composition of an onto function and its converse. (Contributed by Stefan O'Rear, 12-Feb-2015.)
Assertion
Ref Expression
fococnv2 (𝐹:𝐴onto𝐵 → (𝐹𝐹) = ( I ↾ 𝐵))

Proof of Theorem fococnv2
StepHypRef Expression
1 fofun 5411 . . 3 (𝐹:𝐴onto𝐵 → Fun 𝐹)
2 funcocnv2 5457 . . 3 (Fun 𝐹 → (𝐹𝐹) = ( I ↾ ran 𝐹))
31, 2syl 14 . 2 (𝐹:𝐴onto𝐵 → (𝐹𝐹) = ( I ↾ ran 𝐹))
4 forn 5413 . . 3 (𝐹:𝐴onto𝐵 → ran 𝐹 = 𝐵)
54reseq2d 4884 . 2 (𝐹:𝐴onto𝐵 → ( I ↾ ran 𝐹) = ( I ↾ 𝐵))
63, 5eqtrd 2198 1 (𝐹:𝐴onto𝐵 → (𝐹𝐹) = ( I ↾ 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1343   I cid 4266  ccnv 4603  ran crn 4605  cres 4606  ccom 4608  Fun wfun 5182  ontowfo 5186
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-fun 5190  df-fn 5191  df-f 5192  df-fo 5194
This theorem is referenced by:  f1ococnv2  5459  foeqcnvco  5758
  Copyright terms: Public domain W3C validator