ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fococnv2 GIF version

Theorem fococnv2 5594
Description: The composition of an onto function and its converse. (Contributed by Stefan O'Rear, 12-Feb-2015.)
Assertion
Ref Expression
fococnv2 (𝐹:𝐴onto𝐵 → (𝐹𝐹) = ( I ↾ 𝐵))

Proof of Theorem fococnv2
StepHypRef Expression
1 fofun 5545 . . 3 (𝐹:𝐴onto𝐵 → Fun 𝐹)
2 funcocnv2 5593 . . 3 (Fun 𝐹 → (𝐹𝐹) = ( I ↾ ran 𝐹))
31, 2syl 14 . 2 (𝐹:𝐴onto𝐵 → (𝐹𝐹) = ( I ↾ ran 𝐹))
4 forn 5547 . . 3 (𝐹:𝐴onto𝐵 → ran 𝐹 = 𝐵)
54reseq2d 5001 . 2 (𝐹:𝐴onto𝐵 → ( I ↾ ran 𝐹) = ( I ↾ 𝐵))
63, 5eqtrd 2262 1 (𝐹:𝐴onto𝐵 → (𝐹𝐹) = ( I ↾ 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395   I cid 4376  ccnv 4715  ran crn 4717  cres 4718  ccom 4720  Fun wfun 5308  ontowfo 5312
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4083  df-opab 4145  df-id 4381  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-fun 5316  df-fn 5317  df-f 5318  df-fo 5320
This theorem is referenced by:  f1ococnv2  5595  foeqcnvco  5907
  Copyright terms: Public domain W3C validator