![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fococnv2 | GIF version |
Description: The composition of an onto function and its converse. (Contributed by Stefan O'Rear, 12-Feb-2015.) |
Ref | Expression |
---|---|
fococnv2 | ⊢ (𝐹:𝐴–onto→𝐵 → (𝐹 ∘ ◡𝐹) = ( I ↾ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fofun 5282 | . . 3 ⊢ (𝐹:𝐴–onto→𝐵 → Fun 𝐹) | |
2 | funcocnv2 5326 | . . 3 ⊢ (Fun 𝐹 → (𝐹 ∘ ◡𝐹) = ( I ↾ ran 𝐹)) | |
3 | 1, 2 | syl 14 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 → (𝐹 ∘ ◡𝐹) = ( I ↾ ran 𝐹)) |
4 | forn 5284 | . . 3 ⊢ (𝐹:𝐴–onto→𝐵 → ran 𝐹 = 𝐵) | |
5 | 4 | reseq2d 4755 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 → ( I ↾ ran 𝐹) = ( I ↾ 𝐵)) |
6 | 3, 5 | eqtrd 2132 | 1 ⊢ (𝐹:𝐴–onto→𝐵 → (𝐹 ∘ ◡𝐹) = ( I ↾ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1299 I cid 4148 ◡ccnv 4476 ran crn 4478 ↾ cres 4479 ∘ ccom 4481 Fun wfun 5053 –onto→wfo 5057 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-14 1460 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 ax-sep 3986 ax-pow 4038 ax-pr 4069 |
This theorem depends on definitions: df-bi 116 df-3an 932 df-tru 1302 df-nf 1405 df-sb 1704 df-eu 1963 df-mo 1964 df-clab 2087 df-cleq 2093 df-clel 2096 df-nfc 2229 df-ral 2380 df-rex 2381 df-v 2643 df-un 3025 df-in 3027 df-ss 3034 df-pw 3459 df-sn 3480 df-pr 3481 df-op 3483 df-br 3876 df-opab 3930 df-id 4153 df-xp 4483 df-rel 4484 df-cnv 4485 df-co 4486 df-dm 4487 df-rn 4488 df-res 4489 df-fun 5061 df-fn 5062 df-f 5063 df-fo 5065 |
This theorem is referenced by: f1ococnv2 5328 foeqcnvco 5623 |
Copyright terms: Public domain | W3C validator |