![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fococnv2 | GIF version |
Description: The composition of an onto function and its converse. (Contributed by Stefan O'Rear, 12-Feb-2015.) |
Ref | Expression |
---|---|
fococnv2 | ⊢ (𝐹:𝐴–onto→𝐵 → (𝐹 ∘ ◡𝐹) = ( I ↾ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fofun 5478 | . . 3 ⊢ (𝐹:𝐴–onto→𝐵 → Fun 𝐹) | |
2 | funcocnv2 5526 | . . 3 ⊢ (Fun 𝐹 → (𝐹 ∘ ◡𝐹) = ( I ↾ ran 𝐹)) | |
3 | 1, 2 | syl 14 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 → (𝐹 ∘ ◡𝐹) = ( I ↾ ran 𝐹)) |
4 | forn 5480 | . . 3 ⊢ (𝐹:𝐴–onto→𝐵 → ran 𝐹 = 𝐵) | |
5 | 4 | reseq2d 4943 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 → ( I ↾ ran 𝐹) = ( I ↾ 𝐵)) |
6 | 3, 5 | eqtrd 2226 | 1 ⊢ (𝐹:𝐴–onto→𝐵 → (𝐹 ∘ ◡𝐹) = ( I ↾ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 I cid 4320 ◡ccnv 4659 ran crn 4661 ↾ cres 4662 ∘ ccom 4664 Fun wfun 5249 –onto→wfo 5253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-br 4031 df-opab 4092 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-fun 5257 df-fn 5258 df-f 5259 df-fo 5261 |
This theorem is referenced by: f1ococnv2 5528 foeqcnvco 5834 |
Copyright terms: Public domain | W3C validator |