ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funcocnv2 Unicode version

Theorem funcocnv2 5525
Description: Composition with the converse. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
funcocnv2  |-  ( Fun 
F  ->  ( F  o.  `' F )  =  (  _I  |`  ran  F ) )

Proof of Theorem funcocnv2
StepHypRef Expression
1 df-fun 5256 . . 3  |-  ( Fun 
F  <->  ( Rel  F  /\  ( F  o.  `' F )  C_  _I  ) )
21simprbi 275 . 2  |-  ( Fun 
F  ->  ( F  o.  `' F )  C_  _I  )
3 iss 4988 . . 3  |-  ( ( F  o.  `' F
)  C_  _I  <->  ( F  o.  `' F )  =  (  _I  |`  dom  ( F  o.  `' F ) ) )
4 dfdm4 4854 . . . . . . . 8  |-  dom  F  =  ran  `' F
5 dmcoeq 4934 . . . . . . . 8  |-  ( dom 
F  =  ran  `' F  ->  dom  ( F  o.  `' F )  =  dom  `' F )
64, 5ax-mp 5 . . . . . . 7  |-  dom  ( F  o.  `' F
)  =  dom  `' F
7 df-rn 4670 . . . . . . 7  |-  ran  F  =  dom  `' F
86, 7eqtr4i 2217 . . . . . 6  |-  dom  ( F  o.  `' F
)  =  ran  F
98a1i 9 . . . . 5  |-  ( Fun 
F  ->  dom  ( F  o.  `' F )  =  ran  F )
109reseq2d 4942 . . . 4  |-  ( Fun 
F  ->  (  _I  |` 
dom  ( F  o.  `' F ) )  =  (  _I  |`  ran  F
) )
1110eqeq2d 2205 . . 3  |-  ( Fun 
F  ->  ( ( F  o.  `' F
)  =  (  _I  |`  dom  ( F  o.  `' F ) )  <->  ( F  o.  `' F )  =  (  _I  |`  ran  F ) ) )
123, 11bitrid 192 . 2  |-  ( Fun 
F  ->  ( ( F  o.  `' F
)  C_  _I  <->  ( F  o.  `' F )  =  (  _I  |`  ran  F ) ) )
132, 12mpbid 147 1  |-  ( Fun 
F  ->  ( F  o.  `' F )  =  (  _I  |`  ran  F ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    C_ wss 3153    _I cid 4319   `'ccnv 4658   dom cdm 4659   ran crn 4660    |` cres 4661    o. ccom 4663   Rel wrel 4664   Fun wfun 5248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-fun 5256
This theorem is referenced by:  fococnv2  5526  f1cocnv2  5528  funcoeqres  5531
  Copyright terms: Public domain W3C validator