ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funcocnv2 Unicode version

Theorem funcocnv2 5596
Description: Composition with the converse. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
funcocnv2  |-  ( Fun 
F  ->  ( F  o.  `' F )  =  (  _I  |`  ran  F ) )

Proof of Theorem funcocnv2
StepHypRef Expression
1 df-fun 5319 . . 3  |-  ( Fun 
F  <->  ( Rel  F  /\  ( F  o.  `' F )  C_  _I  ) )
21simprbi 275 . 2  |-  ( Fun 
F  ->  ( F  o.  `' F )  C_  _I  )
3 iss 5050 . . 3  |-  ( ( F  o.  `' F
)  C_  _I  <->  ( F  o.  `' F )  =  (  _I  |`  dom  ( F  o.  `' F ) ) )
4 dfdm4 4914 . . . . . . . 8  |-  dom  F  =  ran  `' F
5 dmcoeq 4996 . . . . . . . 8  |-  ( dom 
F  =  ran  `' F  ->  dom  ( F  o.  `' F )  =  dom  `' F )
64, 5ax-mp 5 . . . . . . 7  |-  dom  ( F  o.  `' F
)  =  dom  `' F
7 df-rn 4729 . . . . . . 7  |-  ran  F  =  dom  `' F
86, 7eqtr4i 2253 . . . . . 6  |-  dom  ( F  o.  `' F
)  =  ran  F
98a1i 9 . . . . 5  |-  ( Fun 
F  ->  dom  ( F  o.  `' F )  =  ran  F )
109reseq2d 5004 . . . 4  |-  ( Fun 
F  ->  (  _I  |` 
dom  ( F  o.  `' F ) )  =  (  _I  |`  ran  F
) )
1110eqeq2d 2241 . . 3  |-  ( Fun 
F  ->  ( ( F  o.  `' F
)  =  (  _I  |`  dom  ( F  o.  `' F ) )  <->  ( F  o.  `' F )  =  (  _I  |`  ran  F ) ) )
123, 11bitrid 192 . 2  |-  ( Fun 
F  ->  ( ( F  o.  `' F
)  C_  _I  <->  ( F  o.  `' F )  =  (  _I  |`  ran  F ) ) )
132, 12mpbid 147 1  |-  ( Fun 
F  ->  ( F  o.  `' F )  =  (  _I  |`  ran  F ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    C_ wss 3197    _I cid 4378   `'ccnv 4717   dom cdm 4718   ran crn 4719    |` cres 4720    o. ccom 4722   Rel wrel 4723   Fun wfun 5311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4083  df-opab 4145  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-fun 5319
This theorem is referenced by:  fococnv2  5597  f1cocnv2  5599  funcoeqres  5602
  Copyright terms: Public domain W3C validator