| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > seqeq3 | Unicode version | ||
| Description: Equality theorem for the sequence builder operation. (Contributed by Mario Carneiro, 4-Sep-2013.) |
| Ref | Expression |
|---|---|
| seqeq3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 999 |
. . . . . . . 8
| |
| 2 | 1 | fveq1d 5560 |
. . . . . . 7
|
| 3 | 2 | oveq2d 5938 |
. . . . . 6
|
| 4 | 3 | opeq2d 3815 |
. . . . 5
|
| 5 | 4 | mpoeq3dva 5986 |
. . . 4
|
| 6 | fveq1 5557 |
. . . . 5
| |
| 7 | 6 | opeq2d 3815 |
. . . 4
|
| 8 | freceq1 6450 |
. . . . 5
| |
| 9 | freceq2 6451 |
. . . . 5
| |
| 10 | 8, 9 | sylan9eq 2249 |
. . . 4
|
| 11 | 5, 7, 10 | syl2anc 411 |
. . 3
|
| 12 | 11 | rneqd 4895 |
. 2
|
| 13 | df-seqfrec 10540 |
. 2
| |
| 14 | df-seqfrec 10540 |
. 2
| |
| 15 | 12, 13, 14 | 3eqtr4g 2254 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-mpt 4096 df-cnv 4671 df-dm 4673 df-rn 4674 df-res 4675 df-iota 5219 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-recs 6363 df-frec 6449 df-seqfrec 10540 |
| This theorem is referenced by: seqeq3d 10547 cbvsum 11525 fsumadd 11571 cbvprod 11723 |
| Copyright terms: Public domain | W3C validator |