ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seqeq3 Unicode version

Theorem seqeq3 10420
Description: Equality theorem for the sequence builder operation. (Contributed by Mario Carneiro, 4-Sep-2013.)
Assertion
Ref Expression
seqeq3  |-  ( F  =  G  ->  seq M (  .+  ,  F )  =  seq M (  .+  ,  G ) )

Proof of Theorem seqeq3
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 997 . . . . . . . 8  |-  ( ( F  =  G  /\  x  e.  ( ZZ>= `  M )  /\  y  e.  _V )  ->  F  =  G )
21fveq1d 5509 . . . . . . 7  |-  ( ( F  =  G  /\  x  e.  ( ZZ>= `  M )  /\  y  e.  _V )  ->  ( F `  ( x  +  1 ) )  =  ( G `  ( x  +  1
) ) )
32oveq2d 5881 . . . . . 6  |-  ( ( F  =  G  /\  x  e.  ( ZZ>= `  M )  /\  y  e.  _V )  ->  (
y  .+  ( F `  ( x  +  1 ) ) )  =  ( y  .+  ( G `  ( x  +  1 ) ) ) )
43opeq2d 3781 . . . . 5  |-  ( ( F  =  G  /\  x  e.  ( ZZ>= `  M )  /\  y  e.  _V )  ->  <. (
x  +  1 ) ,  ( y  .+  ( F `  ( x  +  1 ) ) ) >.  =  <. ( x  +  1 ) ,  ( y  .+  ( G `  ( x  +  1 ) ) ) >. )
54mpoeq3dva 5929 . . . 4  |-  ( F  =  G  ->  (
x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( y  .+  ( F `  ( x  +  1 ) ) ) >. )  =  ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( y  .+  ( G `  ( x  +  1 ) ) ) >. ) )
6 fveq1 5506 . . . . 5  |-  ( F  =  G  ->  ( F `  M )  =  ( G `  M ) )
76opeq2d 3781 . . . 4  |-  ( F  =  G  ->  <. M , 
( F `  M
) >.  =  <. M , 
( G `  M
) >. )
8 freceq1 6383 . . . . 5  |-  ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( y  .+  ( F `  ( x  +  1 ) ) ) >. )  =  ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( y  .+  ( G `  ( x  +  1 ) ) ) >. )  -> frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( y  .+  ( F `  ( x  +  1 ) ) ) >. ) ,  <. M ,  ( F `  M ) >. )  = frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. ( x  +  1 ) ,  ( y 
.+  ( G `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. ) )
9 freceq2 6384 . . . . 5  |-  ( <. M ,  ( F `  M ) >.  =  <. M ,  ( G `  M ) >.  -> frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( y  .+  ( G `  ( x  +  1 ) ) ) >. ) ,  <. M ,  ( F `  M ) >. )  = frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. ( x  +  1 ) ,  ( y 
.+  ( G `  ( x  +  1
) ) ) >.
) ,  <. M , 
( G `  M
) >. ) )
108, 9sylan9eq 2228 . . . 4  |-  ( ( ( x  e.  (
ZZ>= `  M ) ,  y  e.  _V  |->  <.
( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
)  =  ( x  e.  ( ZZ>= `  M
) ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( G `
 ( x  + 
1 ) ) )
>. )  /\  <. M , 
( F `  M
) >.  =  <. M , 
( G `  M
) >. )  -> frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( y  .+  ( F `  ( x  +  1 ) ) ) >. ) ,  <. M ,  ( F `  M ) >. )  = frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. ( x  +  1 ) ,  ( y 
.+  ( G `  ( x  +  1
) ) ) >.
) ,  <. M , 
( G `  M
) >. ) )
115, 7, 10syl2anc 411 . . 3  |-  ( F  =  G  -> frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( y  .+  ( F `  ( x  +  1 ) ) ) >. ) ,  <. M ,  ( F `  M ) >. )  = frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. ( x  +  1 ) ,  ( y 
.+  ( G `  ( x  +  1
) ) ) >.
) ,  <. M , 
( G `  M
) >. ) )
1211rneqd 4849 . 2  |-  ( F  =  G  ->  ran frec ( ( x  e.  (
ZZ>= `  M ) ,  y  e.  _V  |->  <.
( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. )  =  ran frec ( ( x  e.  (
ZZ>= `  M ) ,  y  e.  _V  |->  <.
( x  +  1 ) ,  ( y 
.+  ( G `  ( x  +  1
) ) ) >.
) ,  <. M , 
( G `  M
) >. ) )
13 df-seqfrec 10416 . 2  |-  seq M
(  .+  ,  F
)  =  ran frec (
( x  e.  (
ZZ>= `  M ) ,  y  e.  _V  |->  <.
( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. )
14 df-seqfrec 10416 . 2  |-  seq M
(  .+  ,  G
)  =  ran frec (
( x  e.  (
ZZ>= `  M ) ,  y  e.  _V  |->  <.
( x  +  1 ) ,  ( y 
.+  ( G `  ( x  +  1
) ) ) >.
) ,  <. M , 
( G `  M
) >. )
1512, 13, 143eqtr4g 2233 1  |-  ( F  =  G  ->  seq M (  .+  ,  F )  =  seq M (  .+  ,  G ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 978    = wceq 1353    e. wcel 2146   _Vcvv 2735   <.cop 3592   ran crn 4621   ` cfv 5208  (class class class)co 5865    e. cmpo 5867  freccfrec 6381   1c1 7787    + caddc 7789   ZZ>=cuz 9501    seqcseq 10415
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-v 2737  df-un 3131  df-in 3133  df-ss 3140  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-br 3999  df-opab 4060  df-mpt 4061  df-cnv 4628  df-dm 4630  df-rn 4631  df-res 4632  df-iota 5170  df-fv 5216  df-ov 5868  df-oprab 5869  df-mpo 5870  df-recs 6296  df-frec 6382  df-seqfrec 10416
This theorem is referenced by:  seqeq3d  10423  cbvsum  11336  fsumadd  11382  cbvprod  11534
  Copyright terms: Public domain W3C validator