| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > seqeq3 | Unicode version | ||
| Description: Equality theorem for the sequence builder operation. (Contributed by Mario Carneiro, 4-Sep-2013.) |
| Ref | Expression |
|---|---|
| seqeq3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1021 |
. . . . . . . 8
| |
| 2 | 1 | fveq1d 5629 |
. . . . . . 7
|
| 3 | 2 | oveq2d 6017 |
. . . . . 6
|
| 4 | 3 | opeq2d 3864 |
. . . . 5
|
| 5 | 4 | mpoeq3dva 6068 |
. . . 4
|
| 6 | fveq1 5626 |
. . . . 5
| |
| 7 | 6 | opeq2d 3864 |
. . . 4
|
| 8 | freceq1 6538 |
. . . . 5
| |
| 9 | freceq2 6539 |
. . . . 5
| |
| 10 | 8, 9 | sylan9eq 2282 |
. . . 4
|
| 11 | 5, 7, 10 | syl2anc 411 |
. . 3
|
| 12 | 11 | rneqd 4953 |
. 2
|
| 13 | df-seqfrec 10670 |
. 2
| |
| 14 | df-seqfrec 10670 |
. 2
| |
| 15 | 12, 13, 14 | 3eqtr4g 2287 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-mpt 4147 df-cnv 4727 df-dm 4729 df-rn 4730 df-res 4731 df-iota 5278 df-fv 5326 df-ov 6004 df-oprab 6005 df-mpo 6006 df-recs 6451 df-frec 6537 df-seqfrec 10670 |
| This theorem is referenced by: seqeq3d 10677 cbvsum 11871 fsumadd 11917 cbvprod 12069 |
| Copyright terms: Public domain | W3C validator |