Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  funmptd GIF version

Theorem funmptd 16191
Description: The maps-to notation defines a function (deduction form).

Note: one should similarly prove a deduction form of funopab4 5355, then prove funmptd 16191 from it, and then prove funmpt 5356 from that: this would reduce global proof length. (Contributed by BJ, 5-Aug-2024.)

Hypothesis
Ref Expression
funmptd.def (𝜑𝐹 = (𝑥𝐴𝐵))
Assertion
Ref Expression
funmptd (𝜑 → Fun 𝐹)

Proof of Theorem funmptd
StepHypRef Expression
1 funmpt 5356 . 2 Fun (𝑥𝐴𝐵)
2 funmptd.def . . 3 (𝜑𝐹 = (𝑥𝐴𝐵))
32funeqd 5340 . 2 (𝜑 → (Fun 𝐹 ↔ Fun (𝑥𝐴𝐵)))
41, 3mpbiri 168 1 (𝜑 → Fun 𝐹)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  cmpt 4145  Fun wfun 5312
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-fun 5320
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator