Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  funmptd GIF version

Theorem funmptd 16077
Description: The maps-to notation defines a function (deduction form).

Note: one should similarly prove a deduction form of funopab4 5331, then prove funmptd 16077 from it, and then prove funmpt 5332 from that: this would reduce global proof length. (Contributed by BJ, 5-Aug-2024.)

Hypothesis
Ref Expression
funmptd.def (𝜑𝐹 = (𝑥𝐴𝐵))
Assertion
Ref Expression
funmptd (𝜑 → Fun 𝐹)

Proof of Theorem funmptd
StepHypRef Expression
1 funmpt 5332 . 2 Fun (𝑥𝐴𝐵)
2 funmptd.def . . 3 (𝜑𝐹 = (𝑥𝐴𝐵))
32funeqd 5316 . 2 (𝜑 → (Fun 𝐹 ↔ Fun (𝑥𝐴𝐵)))
41, 3mpbiri 168 1 (𝜑 → Fun 𝐹)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1375  cmpt 4124  Fun wfun 5288
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ral 2493  df-rex 2494  df-v 2781  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-fun 5296
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator