Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  funmptd GIF version

Theorem funmptd 15813
Description: The maps-to notation defines a function (deduction form).

Note: one should similarly prove a deduction form of funopab4 5313, then prove funmptd 15813 from it, and then prove funmpt 5314 from that: this would reduce global proof length. (Contributed by BJ, 5-Aug-2024.)

Hypothesis
Ref Expression
funmptd.def (𝜑𝐹 = (𝑥𝐴𝐵))
Assertion
Ref Expression
funmptd (𝜑 → Fun 𝐹)

Proof of Theorem funmptd
StepHypRef Expression
1 funmpt 5314 . 2 Fun (𝑥𝐴𝐵)
2 funmptd.def . . 3 (𝜑𝐹 = (𝑥𝐴𝐵))
32funeqd 5298 . 2 (𝜑 → (Fun 𝐹 ↔ Fun (𝑥𝐴𝐵)))
41, 3mpbiri 168 1 (𝜑 → Fun 𝐹)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  cmpt 4109  Fun wfun 5270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-pow 4222  ax-pr 4257
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-fun 5278
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator