Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  funmptd GIF version

Theorem funmptd 14640
Description: The maps-to notation defines a function (deduction form).

Note: one should similarly prove a deduction form of funopab4 5255, then prove funmptd 14640 from it, and then prove funmpt 5256 from that: this would reduce global proof length. (Contributed by BJ, 5-Aug-2024.)

Hypothesis
Ref Expression
funmptd.def (𝜑𝐹 = (𝑥𝐴𝐵))
Assertion
Ref Expression
funmptd (𝜑 → Fun 𝐹)

Proof of Theorem funmptd
StepHypRef Expression
1 funmpt 5256 . 2 Fun (𝑥𝐴𝐵)
2 funmptd.def . . 3 (𝜑𝐹 = (𝑥𝐴𝐵))
32funeqd 5240 . 2 (𝜑 → (Fun 𝐹 ↔ Fun (𝑥𝐴𝐵)))
41, 3mpbiri 168 1 (𝜑 → Fun 𝐹)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1353  cmpt 4066  Fun wfun 5212
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-fun 5220
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator