![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > funmptd | GIF version |
Description: The maps-to notation
defines a function (deduction form).
Note: one should similarly prove a deduction form of funopab4 5291, then prove funmptd 15295 from it, and then prove funmpt 5292 from that: this would reduce global proof length. (Contributed by BJ, 5-Aug-2024.) |
Ref | Expression |
---|---|
funmptd.def | ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵)) |
Ref | Expression |
---|---|
funmptd | ⊢ (𝜑 → Fun 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funmpt 5292 | . 2 ⊢ Fun (𝑥 ∈ 𝐴 ↦ 𝐵) | |
2 | funmptd.def | . . 3 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵)) | |
3 | 2 | funeqd 5276 | . 2 ⊢ (𝜑 → (Fun 𝐹 ↔ Fun (𝑥 ∈ 𝐴 ↦ 𝐵))) |
4 | 1, 3 | mpbiri 168 | 1 ⊢ (𝜑 → Fun 𝐹) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ↦ cmpt 4090 Fun wfun 5248 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-fun 5256 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |