Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  funmptd GIF version

Theorem funmptd 15533
Description: The maps-to notation defines a function (deduction form).

Note: one should similarly prove a deduction form of funopab4 5296, then prove funmptd 15533 from it, and then prove funmpt 5297 from that: this would reduce global proof length. (Contributed by BJ, 5-Aug-2024.)

Hypothesis
Ref Expression
funmptd.def (𝜑𝐹 = (𝑥𝐴𝐵))
Assertion
Ref Expression
funmptd (𝜑 → Fun 𝐹)

Proof of Theorem funmptd
StepHypRef Expression
1 funmpt 5297 . 2 Fun (𝑥𝐴𝐵)
2 funmptd.def . . 3 (𝜑𝐹 = (𝑥𝐴𝐵))
32funeqd 5281 . 2 (𝜑 → (Fun 𝐹 ↔ Fun (𝑥𝐴𝐵)))
41, 3mpbiri 168 1 (𝜑 → Fun 𝐹)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  cmpt 4095  Fun wfun 5253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-fun 5261
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator