Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  djurclALT Unicode version

Theorem djurclALT 14694
Description: Shortening of djurcl 7054 using djucllem 14692. (Contributed by BJ, 4-Jul-2022.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
djurclALT  |-  ( C  e.  B  ->  (
(inr  |`  B ) `  C )  e.  ( A B ) )

Proof of Theorem djurclALT
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 1oex 6428 . . . . 5  |-  1o  e.  _V
2 df-inr 7050 . . . . 5  |- inr  =  ( x  e.  _V  |->  <. 1o ,  x >. )
31, 2djucllem 14692 . . . 4  |-  ( C  e.  B  ->  (
(inr  |`  B ) `  C )  e.  ( { 1o }  X.  B ) )
43olcd 734 . . 3  |-  ( C  e.  B  ->  (
( (inr  |`  B ) `
 C )  e.  ( { (/) }  X.  A )  \/  (
(inr  |`  B ) `  C )  e.  ( { 1o }  X.  B ) ) )
5 elun 3278 . . 3  |-  ( ( (inr  |`  B ) `  C )  e.  ( ( { (/) }  X.  A )  u.  ( { 1o }  X.  B
) )  <->  ( (
(inr  |`  B ) `  C )  e.  ( { (/) }  X.  A
)  \/  ( (inr  |`  B ) `  C
)  e.  ( { 1o }  X.  B
) ) )
64, 5sylibr 134 . 2  |-  ( C  e.  B  ->  (
(inr  |`  B ) `  C )  e.  ( ( { (/) }  X.  A )  u.  ( { 1o }  X.  B
) ) )
7 df-dju 7040 . 2  |-  ( A B )  =  ( ( { (/) }  X.  A )  u.  ( { 1o }  X.  B
) )
86, 7eleqtrrdi 2271 1  |-  ( C  e.  B  ->  (
(inr  |`  B ) `  C )  e.  ( A B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 708    e. wcel 2148    u. cun 3129   (/)c0 3424   {csn 3594    X. cxp 4626    |` cres 4630   ` cfv 5218   1oc1o 6413   ⊔ cdju 7039  inrcinr 7048
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-iord 4368  df-on 4370  df-suc 4373  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-res 4640  df-iota 5180  df-fun 5220  df-fv 5226  df-1o 6420  df-dju 7040  df-inr 7050
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator