Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  djurclALT Unicode version

Theorem djurclALT 15364
Description: Shortening of djurcl 7113 using djucllem 15362. (Contributed by BJ, 4-Jul-2022.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
djurclALT  |-  ( C  e.  B  ->  (
(inr  |`  B ) `  C )  e.  ( A B ) )

Proof of Theorem djurclALT
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 1oex 6479 . . . . 5  |-  1o  e.  _V
2 df-inr 7109 . . . . 5  |- inr  =  ( x  e.  _V  |->  <. 1o ,  x >. )
31, 2djucllem 15362 . . . 4  |-  ( C  e.  B  ->  (
(inr  |`  B ) `  C )  e.  ( { 1o }  X.  B ) )
43olcd 735 . . 3  |-  ( C  e.  B  ->  (
( (inr  |`  B ) `
 C )  e.  ( { (/) }  X.  A )  \/  (
(inr  |`  B ) `  C )  e.  ( { 1o }  X.  B ) ) )
5 elun 3301 . . 3  |-  ( ( (inr  |`  B ) `  C )  e.  ( ( { (/) }  X.  A )  u.  ( { 1o }  X.  B
) )  <->  ( (
(inr  |`  B ) `  C )  e.  ( { (/) }  X.  A
)  \/  ( (inr  |`  B ) `  C
)  e.  ( { 1o }  X.  B
) ) )
64, 5sylibr 134 . 2  |-  ( C  e.  B  ->  (
(inr  |`  B ) `  C )  e.  ( ( { (/) }  X.  A )  u.  ( { 1o }  X.  B
) ) )
7 df-dju 7099 . 2  |-  ( A B )  =  ( ( { (/) }  X.  A )  u.  ( { 1o }  X.  B
) )
86, 7eleqtrrdi 2287 1  |-  ( C  e.  B  ->  (
(inr  |`  B ) `  C )  e.  ( A B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 709    e. wcel 2164    u. cun 3152   (/)c0 3447   {csn 3619    X. cxp 4658    |` cres 4662   ` cfv 5255   1oc1o 6464   ⊔ cdju 7098  inrcinr 7107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2987  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-iord 4398  df-on 4400  df-suc 4403  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-res 4672  df-iota 5216  df-fun 5257  df-fv 5263  df-1o 6471  df-dju 7099  df-inr 7109
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator