ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fununmo Unicode version

Theorem fununmo 5325
Description: If the union of classes is a function, there is at most one element in relation to an arbitrary element regarding one of these classes. (Contributed by AV, 18-Jul-2019.)
Assertion
Ref Expression
fununmo  |-  ( Fun  ( F  u.  G
)  ->  E* y  x F y )
Distinct variable groups:    x, y    y, F    y, G
Allowed substitution hints:    F( x)    G( x)

Proof of Theorem fununmo
StepHypRef Expression
1 funmo 5295 . 2  |-  ( Fun  ( F  u.  G
)  ->  E* y  x ( F  u.  G ) y )
2 orc 714 . . . 4  |-  ( x F y  ->  (
x F y  \/  x G y ) )
3 brun 4103 . . . 4  |-  ( x ( F  u.  G
) y  <->  ( x F y  \/  x G y ) )
42, 3sylibr 134 . . 3  |-  ( x F y  ->  x
( F  u.  G
) y )
54moimi 2120 . 2  |-  ( E* y  x ( F  u.  G ) y  ->  E* y  x F y )
61, 5syl 14 1  |-  ( Fun  ( F  u.  G
)  ->  E* y  x F y )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 710   E*wmo 2056    u. cun 3168   class class class wbr 4051   Fun wfun 5274
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-br 4052  df-opab 4114  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-fun 5282
This theorem is referenced by:  fununfun  5326
  Copyright terms: Public domain W3C validator