ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fununmo Unicode version

Theorem fununmo 5315
Description: If the union of classes is a function, there is at most one element in relation to an arbitrary element regarding one of these classes. (Contributed by AV, 18-Jul-2019.)
Assertion
Ref Expression
fununmo  |-  ( Fun  ( F  u.  G
)  ->  E* y  x F y )
Distinct variable groups:    x, y    y, F    y, G
Allowed substitution hints:    F( x)    G( x)

Proof of Theorem fununmo
StepHypRef Expression
1 funmo 5285 . 2  |-  ( Fun  ( F  u.  G
)  ->  E* y  x ( F  u.  G ) y )
2 orc 713 . . . 4  |-  ( x F y  ->  (
x F y  \/  x G y ) )
3 brun 4094 . . . 4  |-  ( x ( F  u.  G
) y  <->  ( x F y  \/  x G y ) )
42, 3sylibr 134 . . 3  |-  ( x F y  ->  x
( F  u.  G
) y )
54moimi 2118 . 2  |-  ( E* y  x ( F  u.  G ) y  ->  E* y  x F y )
61, 5syl 14 1  |-  ( Fun  ( F  u.  G
)  ->  E* y  x F y )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 709   E*wmo 2054    u. cun 3163   class class class wbr 4043   Fun wfun 5264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-br 4044  df-opab 4105  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-fun 5272
This theorem is referenced by:  fununfun  5316
  Copyright terms: Public domain W3C validator