| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fununmo | GIF version | ||
| Description: If the union of classes is a function, there is at most one element in relation to an arbitrary element regarding one of these classes. (Contributed by AV, 18-Jul-2019.) |
| Ref | Expression |
|---|---|
| fununmo | ⊢ (Fun (𝐹 ∪ 𝐺) → ∃*𝑦 𝑥𝐹𝑦) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funmo 5332 | . 2 ⊢ (Fun (𝐹 ∪ 𝐺) → ∃*𝑦 𝑥(𝐹 ∪ 𝐺)𝑦) | |
| 2 | orc 717 | . . . 4 ⊢ (𝑥𝐹𝑦 → (𝑥𝐹𝑦 ∨ 𝑥𝐺𝑦)) | |
| 3 | brun 4134 | . . . 4 ⊢ (𝑥(𝐹 ∪ 𝐺)𝑦 ↔ (𝑥𝐹𝑦 ∨ 𝑥𝐺𝑦)) | |
| 4 | 2, 3 | sylibr 134 | . . 3 ⊢ (𝑥𝐹𝑦 → 𝑥(𝐹 ∪ 𝐺)𝑦) |
| 5 | 4 | moimi 2143 | . 2 ⊢ (∃*𝑦 𝑥(𝐹 ∪ 𝐺)𝑦 → ∃*𝑦 𝑥𝐹𝑦) |
| 6 | 1, 5 | syl 14 | 1 ⊢ (Fun (𝐹 ∪ 𝐺) → ∃*𝑦 𝑥𝐹𝑦) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∨ wo 713 ∃*wmo 2078 ∪ cun 3195 class class class wbr 4082 Fun wfun 5311 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4083 df-opab 4145 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-fun 5319 |
| This theorem is referenced by: fununfun 5363 |
| Copyright terms: Public domain | W3C validator |