ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fununfun Unicode version

Theorem fununfun 5326
Description: If the union of classes is a function, the classes itselves are functions. (Contributed by AV, 18-Jul-2019.)
Assertion
Ref Expression
fununfun  |-  ( Fun  ( F  u.  G
)  ->  ( Fun  F  /\  Fun  G ) )

Proof of Theorem fununfun
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funrel 5297 . . 3  |-  ( Fun  ( F  u.  G
)  ->  Rel  ( F  u.  G ) )
2 relun 4800 . . 3  |-  ( Rel  ( F  u.  G
)  <->  ( Rel  F  /\  Rel  G ) )
31, 2sylib 122 . 2  |-  ( Fun  ( F  u.  G
)  ->  ( Rel  F  /\  Rel  G ) )
4 simpl 109 . . . . 5  |-  ( ( Rel  F  /\  Rel  G )  ->  Rel  F )
5 fununmo 5325 . . . . . 6  |-  ( Fun  ( F  u.  G
)  ->  E* y  x F y )
65alrimiv 1898 . . . . 5  |-  ( Fun  ( F  u.  G
)  ->  A. x E* y  x F
y )
74, 6anim12i 338 . . . 4  |-  ( ( ( Rel  F  /\  Rel  G )  /\  Fun  ( F  u.  G
) )  ->  ( Rel  F  /\  A. x E* y  x F
y ) )
8 dffun6 5294 . . . 4  |-  ( Fun 
F  <->  ( Rel  F  /\  A. x E* y  x F y ) )
97, 8sylibr 134 . . 3  |-  ( ( ( Rel  F  /\  Rel  G )  /\  Fun  ( F  u.  G
) )  ->  Fun  F )
10 simpr 110 . . . . 5  |-  ( ( Rel  F  /\  Rel  G )  ->  Rel  G )
11 uncom 3321 . . . . . . . 8  |-  ( F  u.  G )  =  ( G  u.  F
)
1211funeqi 5301 . . . . . . 7  |-  ( Fun  ( F  u.  G
)  <->  Fun  ( G  u.  F ) )
13 fununmo 5325 . . . . . . 7  |-  ( Fun  ( G  u.  F
)  ->  E* y  x G y )
1412, 13sylbi 121 . . . . . 6  |-  ( Fun  ( F  u.  G
)  ->  E* y  x G y )
1514alrimiv 1898 . . . . 5  |-  ( Fun  ( F  u.  G
)  ->  A. x E* y  x G
y )
1610, 15anim12i 338 . . . 4  |-  ( ( ( Rel  F  /\  Rel  G )  /\  Fun  ( F  u.  G
) )  ->  ( Rel  G  /\  A. x E* y  x G
y ) )
17 dffun6 5294 . . . 4  |-  ( Fun 
G  <->  ( Rel  G  /\  A. x E* y  x G y ) )
1816, 17sylibr 134 . . 3  |-  ( ( ( Rel  F  /\  Rel  G )  /\  Fun  ( F  u.  G
) )  ->  Fun  G )
199, 18jca 306 . 2  |-  ( ( ( Rel  F  /\  Rel  G )  /\  Fun  ( F  u.  G
) )  ->  ( Fun  F  /\  Fun  G
) )
203, 19mpancom 422 1  |-  ( Fun  ( F  u.  G
)  ->  ( Fun  F  /\  Fun  G ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   A.wal 1371   E*wmo 2056    u. cun 3168   class class class wbr 4051   Rel wrel 4688   Fun wfun 5274
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-br 4052  df-opab 4114  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-fun 5282
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator