ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fununfun Unicode version

Theorem fununfun 5363
Description: If the union of classes is a function, the classes itselves are functions. (Contributed by AV, 18-Jul-2019.)
Assertion
Ref Expression
fununfun  |-  ( Fun  ( F  u.  G
)  ->  ( Fun  F  /\  Fun  G ) )

Proof of Theorem fununfun
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funrel 5334 . . 3  |-  ( Fun  ( F  u.  G
)  ->  Rel  ( F  u.  G ) )
2 relun 4835 . . 3  |-  ( Rel  ( F  u.  G
)  <->  ( Rel  F  /\  Rel  G ) )
31, 2sylib 122 . 2  |-  ( Fun  ( F  u.  G
)  ->  ( Rel  F  /\  Rel  G ) )
4 simpl 109 . . . . 5  |-  ( ( Rel  F  /\  Rel  G )  ->  Rel  F )
5 fununmo 5362 . . . . . 6  |-  ( Fun  ( F  u.  G
)  ->  E* y  x F y )
65alrimiv 1920 . . . . 5  |-  ( Fun  ( F  u.  G
)  ->  A. x E* y  x F
y )
74, 6anim12i 338 . . . 4  |-  ( ( ( Rel  F  /\  Rel  G )  /\  Fun  ( F  u.  G
) )  ->  ( Rel  F  /\  A. x E* y  x F
y ) )
8 dffun6 5331 . . . 4  |-  ( Fun 
F  <->  ( Rel  F  /\  A. x E* y  x F y ) )
97, 8sylibr 134 . . 3  |-  ( ( ( Rel  F  /\  Rel  G )  /\  Fun  ( F  u.  G
) )  ->  Fun  F )
10 simpr 110 . . . . 5  |-  ( ( Rel  F  /\  Rel  G )  ->  Rel  G )
11 uncom 3348 . . . . . . . 8  |-  ( F  u.  G )  =  ( G  u.  F
)
1211funeqi 5338 . . . . . . 7  |-  ( Fun  ( F  u.  G
)  <->  Fun  ( G  u.  F ) )
13 fununmo 5362 . . . . . . 7  |-  ( Fun  ( G  u.  F
)  ->  E* y  x G y )
1412, 13sylbi 121 . . . . . 6  |-  ( Fun  ( F  u.  G
)  ->  E* y  x G y )
1514alrimiv 1920 . . . . 5  |-  ( Fun  ( F  u.  G
)  ->  A. x E* y  x G
y )
1610, 15anim12i 338 . . . 4  |-  ( ( ( Rel  F  /\  Rel  G )  /\  Fun  ( F  u.  G
) )  ->  ( Rel  G  /\  A. x E* y  x G
y ) )
17 dffun6 5331 . . . 4  |-  ( Fun 
G  <->  ( Rel  G  /\  A. x E* y  x G y ) )
1816, 17sylibr 134 . . 3  |-  ( ( ( Rel  F  /\  Rel  G )  /\  Fun  ( F  u.  G
) )  ->  Fun  G )
199, 18jca 306 . 2  |-  ( ( ( Rel  F  /\  Rel  G )  /\  Fun  ( F  u.  G
) )  ->  ( Fun  F  /\  Fun  G
) )
203, 19mpancom 422 1  |-  ( Fun  ( F  u.  G
)  ->  ( Fun  F  /\  Fun  G ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   A.wal 1393   E*wmo 2078    u. cun 3195   class class class wbr 4082   Rel wrel 4723   Fun wfun 5311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4083  df-opab 4145  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-fun 5319
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator