ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fununfun Unicode version

Theorem fununfun 5316
Description: If the union of classes is a function, the classes itselves are functions. (Contributed by AV, 18-Jul-2019.)
Assertion
Ref Expression
fununfun  |-  ( Fun  ( F  u.  G
)  ->  ( Fun  F  /\  Fun  G ) )

Proof of Theorem fununfun
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funrel 5287 . . 3  |-  ( Fun  ( F  u.  G
)  ->  Rel  ( F  u.  G ) )
2 relun 4791 . . 3  |-  ( Rel  ( F  u.  G
)  <->  ( Rel  F  /\  Rel  G ) )
31, 2sylib 122 . 2  |-  ( Fun  ( F  u.  G
)  ->  ( Rel  F  /\  Rel  G ) )
4 simpl 109 . . . . 5  |-  ( ( Rel  F  /\  Rel  G )  ->  Rel  F )
5 fununmo 5315 . . . . . 6  |-  ( Fun  ( F  u.  G
)  ->  E* y  x F y )
65alrimiv 1896 . . . . 5  |-  ( Fun  ( F  u.  G
)  ->  A. x E* y  x F
y )
74, 6anim12i 338 . . . 4  |-  ( ( ( Rel  F  /\  Rel  G )  /\  Fun  ( F  u.  G
) )  ->  ( Rel  F  /\  A. x E* y  x F
y ) )
8 dffun6 5284 . . . 4  |-  ( Fun 
F  <->  ( Rel  F  /\  A. x E* y  x F y ) )
97, 8sylibr 134 . . 3  |-  ( ( ( Rel  F  /\  Rel  G )  /\  Fun  ( F  u.  G
) )  ->  Fun  F )
10 simpr 110 . . . . 5  |-  ( ( Rel  F  /\  Rel  G )  ->  Rel  G )
11 uncom 3316 . . . . . . . 8  |-  ( F  u.  G )  =  ( G  u.  F
)
1211funeqi 5291 . . . . . . 7  |-  ( Fun  ( F  u.  G
)  <->  Fun  ( G  u.  F ) )
13 fununmo 5315 . . . . . . 7  |-  ( Fun  ( G  u.  F
)  ->  E* y  x G y )
1412, 13sylbi 121 . . . . . 6  |-  ( Fun  ( F  u.  G
)  ->  E* y  x G y )
1514alrimiv 1896 . . . . 5  |-  ( Fun  ( F  u.  G
)  ->  A. x E* y  x G
y )
1610, 15anim12i 338 . . . 4  |-  ( ( ( Rel  F  /\  Rel  G )  /\  Fun  ( F  u.  G
) )  ->  ( Rel  G  /\  A. x E* y  x G
y ) )
17 dffun6 5284 . . . 4  |-  ( Fun 
G  <->  ( Rel  G  /\  A. x E* y  x G y ) )
1816, 17sylibr 134 . . 3  |-  ( ( ( Rel  F  /\  Rel  G )  /\  Fun  ( F  u.  G
) )  ->  Fun  G )
199, 18jca 306 . 2  |-  ( ( ( Rel  F  /\  Rel  G )  /\  Fun  ( F  u.  G
) )  ->  ( Fun  F  /\  Fun  G
) )
203, 19mpancom 422 1  |-  ( Fun  ( F  u.  G
)  ->  ( Fun  F  /\  Fun  G ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   A.wal 1370   E*wmo 2054    u. cun 3163   class class class wbr 4043   Rel wrel 4679   Fun wfun 5264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-br 4044  df-opab 4105  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-fun 5272
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator