ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvmptdv Unicode version

Theorem fvmptdv 5404
Description: Alternate deduction version of fvmpt 5394, suitable for iteration. (Contributed by Mario Carneiro, 7-Jan-2017.)
Hypotheses
Ref Expression
fvmptdf.1  |-  ( ph  ->  A  e.  D )
fvmptdf.2  |-  ( (
ph  /\  x  =  A )  ->  B  e.  V )
fvmptdf.3  |-  ( (
ph  /\  x  =  A )  ->  (
( F `  A
)  =  B  ->  ps ) )
Assertion
Ref Expression
fvmptdv  |-  ( ph  ->  ( F  =  ( x  e.  D  |->  B )  ->  ps )
)
Distinct variable groups:    x, A    x, D    ph, x    x, F    ps, x
Allowed substitution hints:    B( x)    V( x)

Proof of Theorem fvmptdv
StepHypRef Expression
1 fvmptdf.1 . 2  |-  ( ph  ->  A  e.  D )
2 fvmptdf.2 . 2  |-  ( (
ph  /\  x  =  A )  ->  B  e.  V )
3 fvmptdf.3 . 2  |-  ( (
ph  /\  x  =  A )  ->  (
( F `  A
)  =  B  ->  ps ) )
4 nfcv 2229 . 2  |-  F/_ x F
5 nfv 1467 . 2  |-  F/ x ps
61, 2, 3, 4, 5fvmptdf 5403 1  |-  ( ph  ->  ( F  =  ( x  e.  D  |->  B )  ->  ps )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1290    e. wcel 1439    |-> cmpt 3905   ` cfv 5028
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-sep 3963  ax-pow 4015  ax-pr 4045
This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ral 2365  df-rex 2366  df-v 2622  df-sbc 2842  df-csb 2935  df-un 3004  df-in 3006  df-ss 3013  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-uni 3660  df-br 3852  df-opab 3906  df-mpt 3907  df-id 4129  df-xp 4457  df-rel 4458  df-cnv 4459  df-co 4460  df-dm 4461  df-iota 4993  df-fun 5030  df-fv 5036
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator