ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvmpt Unicode version

Theorem fvmpt 5430
Description: Value of a function given in maps-to notation. (Contributed by NM, 17-Aug-2011.)
Hypotheses
Ref Expression
fvmptg.1  |-  ( x  =  A  ->  B  =  C )
fvmptg.2  |-  F  =  ( x  e.  D  |->  B )
fvmpt.3  |-  C  e. 
_V
Assertion
Ref Expression
fvmpt  |-  ( A  e.  D  ->  ( F `  A )  =  C )
Distinct variable groups:    x, A    x, C    x, D
Allowed substitution hints:    B( x)    F( x)

Proof of Theorem fvmpt
StepHypRef Expression
1 fvmpt.3 . 2  |-  C  e. 
_V
2 fvmptg.1 . . 3  |-  ( x  =  A  ->  B  =  C )
3 fvmptg.2 . . 3  |-  F  =  ( x  e.  D  |->  B )
42, 3fvmptg 5429 . 2  |-  ( ( A  e.  D  /\  C  e.  _V )  ->  ( F `  A
)  =  C )
51, 4mpan2 419 1  |-  ( A  e.  D  ->  ( F `  A )  =  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1299    e. wcel 1448   _Vcvv 2641    |-> cmpt 3929   ` cfv 5059
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-sep 3986  ax-pow 4038  ax-pr 4069
This theorem depends on definitions:  df-bi 116  df-3an 932  df-tru 1302  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ral 2380  df-rex 2381  df-v 2643  df-sbc 2863  df-un 3025  df-in 3027  df-ss 3034  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-br 3876  df-opab 3930  df-mpt 3931  df-id 4153  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-iota 5024  df-fun 5061  df-fv 5067
This theorem is referenced by:  reldm  6014  rdg0  6214  oacl  6286  fvmptmap  6509  xpcomco  6649  uzval  9178  sqrtrval  10612  fsumcnv  11045  ege2le3  11175  qnumval  11655  qdenval  11656  peano4nninf  12784  peano3nninf  12785  nninfsellemeq  12794
  Copyright terms: Public domain W3C validator