ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvmpt Unicode version

Theorem fvmpt 5585
Description: Value of a function given in maps-to notation. (Contributed by NM, 17-Aug-2011.)
Hypotheses
Ref Expression
fvmptg.1  |-  ( x  =  A  ->  B  =  C )
fvmptg.2  |-  F  =  ( x  e.  D  |->  B )
fvmpt.3  |-  C  e. 
_V
Assertion
Ref Expression
fvmpt  |-  ( A  e.  D  ->  ( F `  A )  =  C )
Distinct variable groups:    x, A    x, C    x, D
Allowed substitution hints:    B( x)    F( x)

Proof of Theorem fvmpt
StepHypRef Expression
1 fvmpt.3 . 2  |-  C  e. 
_V
2 fvmptg.1 . . 3  |-  ( x  =  A  ->  B  =  C )
3 fvmptg.2 . . 3  |-  F  =  ( x  e.  D  |->  B )
42, 3fvmptg 5584 . 2  |-  ( ( A  e.  D  /\  C  e.  _V )  ->  ( F `  A
)  =  C )
51, 4mpan2 425 1  |-  ( A  e.  D  ->  ( F `  A )  =  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353    e. wcel 2146   _Vcvv 2735    |-> cmpt 4059   ` cfv 5208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-v 2737  df-sbc 2961  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-iota 5170  df-fun 5210  df-fv 5216
This theorem is referenced by:  reldm  6177  rdg0  6378  oacl  6451  fvmptmap  6675  xpcomco  6816  infnninf  7112  uzval  9501  sqrtrval  10975  fsumcnv  11411  fprodcnv  11599  ege2le3  11645  qnumval  12150  qdenval  12151  odzval  12206  pcmpt  12306  1arithlem1  12326  peano4nninf  14296  peano3nninf  14297  nninfsellemeq  14304
  Copyright terms: Public domain W3C validator