| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fvmpt | Unicode version | ||
| Description: Value of a function given in maps-to notation. (Contributed by NM, 17-Aug-2011.) |
| Ref | Expression |
|---|---|
| fvmptg.1 |
|
| fvmptg.2 |
|
| fvmpt.3 |
|
| Ref | Expression |
|---|---|
| fvmpt |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvmpt.3 |
. 2
| |
| 2 | fvmptg.1 |
. . 3
| |
| 3 | fvmptg.2 |
. . 3
| |
| 4 | 2, 3 | fvmptg 5709 |
. 2
|
| 5 | 1, 4 | mpan2 425 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-iota 5277 df-fun 5319 df-fv 5325 |
| This theorem is referenced by: reldm 6330 rdg0 6531 oacl 6604 fvmptmap 6830 xpcomco 6981 infnninf 7287 uzval 9720 sqrtrval 11506 fsumcnv 11943 fprodcnv 12131 ege2le3 12177 bitsfval 12448 nninfctlemfo 12556 qnumval 12702 qdenval 12703 odzval 12759 pcmpt 12861 1arithlem1 12881 elply2 15403 peano4nninf 16331 peano3nninf 16332 nninfsellemeq 16339 |
| Copyright terms: Public domain | W3C validator |