ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvmpt Unicode version

Theorem fvmpt 5656
Description: Value of a function given in maps-to notation. (Contributed by NM, 17-Aug-2011.)
Hypotheses
Ref Expression
fvmptg.1  |-  ( x  =  A  ->  B  =  C )
fvmptg.2  |-  F  =  ( x  e.  D  |->  B )
fvmpt.3  |-  C  e. 
_V
Assertion
Ref Expression
fvmpt  |-  ( A  e.  D  ->  ( F `  A )  =  C )
Distinct variable groups:    x, A    x, C    x, D
Allowed substitution hints:    B( x)    F( x)

Proof of Theorem fvmpt
StepHypRef Expression
1 fvmpt.3 . 2  |-  C  e. 
_V
2 fvmptg.1 . . 3  |-  ( x  =  A  ->  B  =  C )
3 fvmptg.2 . . 3  |-  F  =  ( x  e.  D  |->  B )
42, 3fvmptg 5655 . 2  |-  ( ( A  e.  D  /\  C  e.  _V )  ->  ( F `  A
)  =  C )
51, 4mpan2 425 1  |-  ( A  e.  D  ->  ( F `  A )  =  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2176   _Vcvv 2772    |-> cmpt 4105   ` cfv 5271
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-sbc 2999  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-iota 5232  df-fun 5273  df-fv 5279
This theorem is referenced by:  reldm  6272  rdg0  6473  oacl  6546  fvmptmap  6772  xpcomco  6921  infnninf  7226  uzval  9650  sqrtrval  11311  fsumcnv  11748  fprodcnv  11936  ege2le3  11982  bitsfval  12253  nninfctlemfo  12361  qnumval  12507  qdenval  12508  odzval  12564  pcmpt  12666  1arithlem1  12686  elply2  15207  peano4nninf  15943  peano3nninf  15944  nninfsellemeq  15951
  Copyright terms: Public domain W3C validator