ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvmptdv GIF version

Theorem fvmptdv 5574
Description: Alternate deduction version of fvmpt 5563, suitable for iteration. (Contributed by Mario Carneiro, 7-Jan-2017.)
Hypotheses
Ref Expression
fvmptdf.1 (𝜑𝐴𝐷)
fvmptdf.2 ((𝜑𝑥 = 𝐴) → 𝐵𝑉)
fvmptdf.3 ((𝜑𝑥 = 𝐴) → ((𝐹𝐴) = 𝐵𝜓))
Assertion
Ref Expression
fvmptdv (𝜑 → (𝐹 = (𝑥𝐷𝐵) → 𝜓))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐷   𝜑,𝑥   𝑥,𝐹   𝜓,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem fvmptdv
StepHypRef Expression
1 fvmptdf.1 . 2 (𝜑𝐴𝐷)
2 fvmptdf.2 . 2 ((𝜑𝑥 = 𝐴) → 𝐵𝑉)
3 fvmptdf.3 . 2 ((𝜑𝑥 = 𝐴) → ((𝐹𝐴) = 𝐵𝜓))
4 nfcv 2308 . 2 𝑥𝐹
5 nfv 1516 . 2 𝑥𝜓
61, 2, 3, 4, 5fvmptdf 5573 1 (𝜑 → (𝐹 = (𝑥𝐷𝐵) → 𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1343  wcel 2136  cmpt 4043  cfv 5188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-csb 3046  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fv 5196
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator