| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fvmptdv | GIF version | ||
| Description: Alternate deduction version of fvmpt 5668, suitable for iteration. (Contributed by Mario Carneiro, 7-Jan-2017.) |
| Ref | Expression |
|---|---|
| fvmptdf.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐷) |
| fvmptdf.2 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 ∈ 𝑉) |
| fvmptdf.3 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → ((𝐹‘𝐴) = 𝐵 → 𝜓)) |
| Ref | Expression |
|---|---|
| fvmptdv | ⊢ (𝜑 → (𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvmptdf.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐷) | |
| 2 | fvmptdf.2 | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 ∈ 𝑉) | |
| 3 | fvmptdf.3 | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → ((𝐹‘𝐴) = 𝐵 → 𝜓)) | |
| 4 | nfcv 2349 | . 2 ⊢ Ⅎ𝑥𝐹 | |
| 5 | nfv 1552 | . 2 ⊢ Ⅎ𝑥𝜓 | |
| 6 | 1, 2, 3, 4, 5 | fvmptdf 5679 | 1 ⊢ (𝜑 → (𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) → 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 ↦ cmpt 4112 ‘cfv 5279 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4169 ax-pow 4225 ax-pr 4260 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-sbc 3003 df-csb 3098 df-un 3174 df-in 3176 df-ss 3183 df-pw 3622 df-sn 3643 df-pr 3644 df-op 3646 df-uni 3856 df-br 4051 df-opab 4113 df-mpt 4114 df-id 4347 df-xp 4688 df-rel 4689 df-cnv 4690 df-co 4691 df-dm 4692 df-iota 5240 df-fun 5281 df-fv 5287 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |