ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvmptdv2 Unicode version

Theorem fvmptdv2 5597
Description: Alternate deduction version of fvmpt 5585, suitable for iteration. (Contributed by Mario Carneiro, 7-Jan-2017.)
Hypotheses
Ref Expression
fvmptdv2.1  |-  ( ph  ->  A  e.  D )
fvmptdv2.2  |-  ( (
ph  /\  x  =  A )  ->  B  e.  V )
fvmptdv2.3  |-  ( (
ph  /\  x  =  A )  ->  B  =  C )
Assertion
Ref Expression
fvmptdv2  |-  ( ph  ->  ( F  =  ( x  e.  D  |->  B )  ->  ( F `  A )  =  C ) )
Distinct variable groups:    x, A    x, C    x, D    ph, x
Allowed substitution hints:    B( x)    F( x)    V( x)

Proof of Theorem fvmptdv2
StepHypRef Expression
1 eqidd 2176 . . 3  |-  ( ph  ->  ( x  e.  D  |->  B )  =  ( x  e.  D  |->  B ) )
2 fvmptdv2.3 . . 3  |-  ( (
ph  /\  x  =  A )  ->  B  =  C )
3 fvmptdv2.1 . . 3  |-  ( ph  ->  A  e.  D )
4 elex 2746 . . . . . 6  |-  ( A  e.  D  ->  A  e.  _V )
53, 4syl 14 . . . . 5  |-  ( ph  ->  A  e.  _V )
6 isset 2741 . . . . 5  |-  ( A  e.  _V  <->  E. x  x  =  A )
75, 6sylib 122 . . . 4  |-  ( ph  ->  E. x  x  =  A )
8 fvmptdv2.2 . . . . . 6  |-  ( (
ph  /\  x  =  A )  ->  B  e.  V )
9 elex 2746 . . . . . 6  |-  ( B  e.  V  ->  B  e.  _V )
108, 9syl 14 . . . . 5  |-  ( (
ph  /\  x  =  A )  ->  B  e.  _V )
112, 10eqeltrrd 2253 . . . 4  |-  ( (
ph  /\  x  =  A )  ->  C  e.  _V )
127, 11exlimddv 1896 . . 3  |-  ( ph  ->  C  e.  _V )
131, 2, 3, 12fvmptd 5589 . 2  |-  ( ph  ->  ( ( x  e.  D  |->  B ) `  A )  =  C )
14 fveq1 5506 . . 3  |-  ( F  =  ( x  e.  D  |->  B )  -> 
( F `  A
)  =  ( ( x  e.  D  |->  B ) `  A ) )
1514eqeq1d 2184 . 2  |-  ( F  =  ( x  e.  D  |->  B )  -> 
( ( F `  A )  =  C  <-> 
( ( x  e.  D  |->  B ) `  A )  =  C ) )
1613, 15syl5ibrcom 157 1  |-  ( ph  ->  ( F  =  ( x  e.  D  |->  B )  ->  ( F `  A )  =  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353   E.wex 1490    e. wcel 2146   _Vcvv 2735    |-> cmpt 4059   ` cfv 5208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-v 2737  df-sbc 2961  df-csb 3056  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-iota 5170  df-fun 5210  df-fv 5216
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator