ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvmptdv2 Unicode version

Theorem fvmptdv2 5428
Description: Alternate deduction version of fvmpt 5416, suitable for iteration. (Contributed by Mario Carneiro, 7-Jan-2017.)
Hypotheses
Ref Expression
fvmptdv2.1  |-  ( ph  ->  A  e.  D )
fvmptdv2.2  |-  ( (
ph  /\  x  =  A )  ->  B  e.  V )
fvmptdv2.3  |-  ( (
ph  /\  x  =  A )  ->  B  =  C )
Assertion
Ref Expression
fvmptdv2  |-  ( ph  ->  ( F  =  ( x  e.  D  |->  B )  ->  ( F `  A )  =  C ) )
Distinct variable groups:    x, A    x, C    x, D    ph, x
Allowed substitution hints:    B( x)    F( x)    V( x)

Proof of Theorem fvmptdv2
StepHypRef Expression
1 eqidd 2096 . . 3  |-  ( ph  ->  ( x  e.  D  |->  B )  =  ( x  e.  D  |->  B ) )
2 fvmptdv2.3 . . 3  |-  ( (
ph  /\  x  =  A )  ->  B  =  C )
3 fvmptdv2.1 . . 3  |-  ( ph  ->  A  e.  D )
4 elex 2644 . . . . . 6  |-  ( A  e.  D  ->  A  e.  _V )
53, 4syl 14 . . . . 5  |-  ( ph  ->  A  e.  _V )
6 isset 2639 . . . . 5  |-  ( A  e.  _V  <->  E. x  x  =  A )
75, 6sylib 121 . . . 4  |-  ( ph  ->  E. x  x  =  A )
8 fvmptdv2.2 . . . . . 6  |-  ( (
ph  /\  x  =  A )  ->  B  e.  V )
9 elex 2644 . . . . . 6  |-  ( B  e.  V  ->  B  e.  _V )
108, 9syl 14 . . . . 5  |-  ( (
ph  /\  x  =  A )  ->  B  e.  _V )
112, 10eqeltrrd 2172 . . . 4  |-  ( (
ph  /\  x  =  A )  ->  C  e.  _V )
127, 11exlimddv 1833 . . 3  |-  ( ph  ->  C  e.  _V )
131, 2, 3, 12fvmptd 5420 . 2  |-  ( ph  ->  ( ( x  e.  D  |->  B ) `  A )  =  C )
14 fveq1 5339 . . 3  |-  ( F  =  ( x  e.  D  |->  B )  -> 
( F `  A
)  =  ( ( x  e.  D  |->  B ) `  A ) )
1514eqeq1d 2103 . 2  |-  ( F  =  ( x  e.  D  |->  B )  -> 
( ( F `  A )  =  C  <-> 
( ( x  e.  D  |->  B ) `  A )  =  C ) )
1613, 15syl5ibrcom 156 1  |-  ( ph  ->  ( F  =  ( x  e.  D  |->  B )  ->  ( F `  A )  =  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1296   E.wex 1433    e. wcel 1445   _Vcvv 2633    |-> cmpt 3921   ` cfv 5049
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-sep 3978  ax-pow 4030  ax-pr 4060
This theorem depends on definitions:  df-bi 116  df-3an 929  df-tru 1299  df-nf 1402  df-sb 1700  df-eu 1958  df-mo 1959  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ral 2375  df-rex 2376  df-v 2635  df-sbc 2855  df-csb 2948  df-un 3017  df-in 3019  df-ss 3026  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-uni 3676  df-br 3868  df-opab 3922  df-mpt 3923  df-id 4144  df-xp 4473  df-rel 4474  df-cnv 4475  df-co 4476  df-dm 4477  df-iota 5014  df-fun 5051  df-fv 5057
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator