ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvmptdv2 Unicode version

Theorem fvmptdv2 5575
Description: Alternate deduction version of fvmpt 5563, suitable for iteration. (Contributed by Mario Carneiro, 7-Jan-2017.)
Hypotheses
Ref Expression
fvmptdv2.1  |-  ( ph  ->  A  e.  D )
fvmptdv2.2  |-  ( (
ph  /\  x  =  A )  ->  B  e.  V )
fvmptdv2.3  |-  ( (
ph  /\  x  =  A )  ->  B  =  C )
Assertion
Ref Expression
fvmptdv2  |-  ( ph  ->  ( F  =  ( x  e.  D  |->  B )  ->  ( F `  A )  =  C ) )
Distinct variable groups:    x, A    x, C    x, D    ph, x
Allowed substitution hints:    B( x)    F( x)    V( x)

Proof of Theorem fvmptdv2
StepHypRef Expression
1 eqidd 2166 . . 3  |-  ( ph  ->  ( x  e.  D  |->  B )  =  ( x  e.  D  |->  B ) )
2 fvmptdv2.3 . . 3  |-  ( (
ph  /\  x  =  A )  ->  B  =  C )
3 fvmptdv2.1 . . 3  |-  ( ph  ->  A  e.  D )
4 elex 2737 . . . . . 6  |-  ( A  e.  D  ->  A  e.  _V )
53, 4syl 14 . . . . 5  |-  ( ph  ->  A  e.  _V )
6 isset 2732 . . . . 5  |-  ( A  e.  _V  <->  E. x  x  =  A )
75, 6sylib 121 . . . 4  |-  ( ph  ->  E. x  x  =  A )
8 fvmptdv2.2 . . . . . 6  |-  ( (
ph  /\  x  =  A )  ->  B  e.  V )
9 elex 2737 . . . . . 6  |-  ( B  e.  V  ->  B  e.  _V )
108, 9syl 14 . . . . 5  |-  ( (
ph  /\  x  =  A )  ->  B  e.  _V )
112, 10eqeltrrd 2244 . . . 4  |-  ( (
ph  /\  x  =  A )  ->  C  e.  _V )
127, 11exlimddv 1886 . . 3  |-  ( ph  ->  C  e.  _V )
131, 2, 3, 12fvmptd 5567 . 2  |-  ( ph  ->  ( ( x  e.  D  |->  B ) `  A )  =  C )
14 fveq1 5485 . . 3  |-  ( F  =  ( x  e.  D  |->  B )  -> 
( F `  A
)  =  ( ( x  e.  D  |->  B ) `  A ) )
1514eqeq1d 2174 . 2  |-  ( F  =  ( x  e.  D  |->  B )  -> 
( ( F `  A )  =  C  <-> 
( ( x  e.  D  |->  B ) `  A )  =  C ) )
1613, 15syl5ibrcom 156 1  |-  ( ph  ->  ( F  =  ( x  e.  D  |->  B )  ->  ( F `  A )  =  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343   E.wex 1480    e. wcel 2136   _Vcvv 2726    |-> cmpt 4043   ` cfv 5188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-csb 3046  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fv 5196
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator