ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suppssof1 Unicode version

Theorem suppssof1 6150
Description: Formula building theorem for support restrictions: vector operation with left annihilator. (Contributed by Stefan O'Rear, 9-Mar-2015.)
Hypotheses
Ref Expression
suppssof1.s  |-  ( ph  ->  ( `' A "
( _V  \  { Y } ) )  C_  L )
suppssof1.o  |-  ( (
ph  /\  v  e.  R )  ->  ( Y O v )  =  Z )
suppssof1.a  |-  ( ph  ->  A : D --> V )
suppssof1.b  |-  ( ph  ->  B : D --> R )
suppssof1.d  |-  ( ph  ->  D  e.  W )
Assertion
Ref Expression
suppssof1  |-  ( ph  ->  ( `' ( A  oF O B ) " ( _V 
\  { Z }
) )  C_  L
)
Distinct variable groups:    ph, v    v, B    v, O    v, R    v, Y    v, Z
Allowed substitution hints:    A( v)    D( v)    L( v)    V( v)    W( v)

Proof of Theorem suppssof1
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 suppssof1.a . . . . . 6  |-  ( ph  ->  A : D --> V )
2 ffn 5404 . . . . . 6  |-  ( A : D --> V  ->  A  Fn  D )
31, 2syl 14 . . . . 5  |-  ( ph  ->  A  Fn  D )
4 suppssof1.b . . . . . 6  |-  ( ph  ->  B : D --> R )
5 ffn 5404 . . . . . 6  |-  ( B : D --> R  ->  B  Fn  D )
64, 5syl 14 . . . . 5  |-  ( ph  ->  B  Fn  D )
7 suppssof1.d . . . . 5  |-  ( ph  ->  D  e.  W )
8 inidm 3369 . . . . 5  |-  ( D  i^i  D )  =  D
9 eqidd 2194 . . . . 5  |-  ( (
ph  /\  x  e.  D )  ->  ( A `  x )  =  ( A `  x ) )
10 eqidd 2194 . . . . 5  |-  ( (
ph  /\  x  e.  D )  ->  ( B `  x )  =  ( B `  x ) )
113, 6, 7, 7, 8, 9, 10offval 6140 . . . 4  |-  ( ph  ->  ( A  oF O B )  =  ( x  e.  D  |->  ( ( A `  x ) O ( B `  x ) ) ) )
1211cnveqd 4839 . . 3  |-  ( ph  ->  `' ( A  oF O B )  =  `' ( x  e.  D  |->  ( ( A `  x ) O ( B `  x ) ) ) )
1312imaeq1d 5005 . 2  |-  ( ph  ->  ( `' ( A  oF O B ) " ( _V 
\  { Z }
) )  =  ( `' ( x  e.  D  |->  ( ( A `
 x ) O ( B `  x
) ) ) "
( _V  \  { Z } ) ) )
141feqmptd 5611 . . . . . 6  |-  ( ph  ->  A  =  ( x  e.  D  |->  ( A `
 x ) ) )
1514cnveqd 4839 . . . . 5  |-  ( ph  ->  `' A  =  `' ( x  e.  D  |->  ( A `  x
) ) )
1615imaeq1d 5005 . . . 4  |-  ( ph  ->  ( `' A "
( _V  \  { Y } ) )  =  ( `' ( x  e.  D  |->  ( A `
 x ) )
" ( _V  \  { Y } ) ) )
17 suppssof1.s . . . 4  |-  ( ph  ->  ( `' A "
( _V  \  { Y } ) )  C_  L )
1816, 17eqsstrrd 3217 . . 3  |-  ( ph  ->  ( `' ( x  e.  D  |->  ( A `
 x ) )
" ( _V  \  { Y } ) ) 
C_  L )
19 suppssof1.o . . 3  |-  ( (
ph  /\  v  e.  R )  ->  ( Y O v )  =  Z )
20 funfvex 5572 . . . . 5  |-  ( ( Fun  A  /\  x  e.  dom  A )  -> 
( A `  x
)  e.  _V )
2120funfni 5355 . . . 4  |-  ( ( A  Fn  D  /\  x  e.  D )  ->  ( A `  x
)  e.  _V )
223, 21sylan 283 . . 3  |-  ( (
ph  /\  x  e.  D )  ->  ( A `  x )  e.  _V )
234ffvelcdmda 5694 . . 3  |-  ( (
ph  /\  x  e.  D )  ->  ( B `  x )  e.  R )
2418, 19, 22, 23suppssov1 6129 . 2  |-  ( ph  ->  ( `' ( x  e.  D  |->  ( ( A `  x ) O ( B `  x ) ) )
" ( _V  \  { Z } ) ) 
C_  L )
2513, 24eqsstrd 3216 1  |-  ( ph  ->  ( `' ( A  oF O B ) " ( _V 
\  { Z }
) )  C_  L
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164   _Vcvv 2760    \ cdif 3151    C_ wss 3154   {csn 3619    |-> cmpt 4091   `'ccnv 4659   "cima 4663    Fn wfn 5250   -->wf 5251   ` cfv 5255  (class class class)co 5919    oFcof 6130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-setind 4570
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-of 6132
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator