| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > suppssof1 | Unicode version | ||
| Description: Formula building theorem for support restrictions: vector operation with left annihilator. (Contributed by Stefan O'Rear, 9-Mar-2015.) |
| Ref | Expression |
|---|---|
| suppssof1.s |
|
| suppssof1.o |
|
| suppssof1.a |
|
| suppssof1.b |
|
| suppssof1.d |
|
| Ref | Expression |
|---|---|
| suppssof1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suppssof1.a |
. . . . . 6
| |
| 2 | ffn 5434 |
. . . . . 6
| |
| 3 | 1, 2 | syl 14 |
. . . . 5
|
| 4 | suppssof1.b |
. . . . . 6
| |
| 5 | ffn 5434 |
. . . . . 6
| |
| 6 | 4, 5 | syl 14 |
. . . . 5
|
| 7 | suppssof1.d |
. . . . 5
| |
| 8 | inidm 3386 |
. . . . 5
| |
| 9 | eqidd 2207 |
. . . . 5
| |
| 10 | eqidd 2207 |
. . . . 5
| |
| 11 | 3, 6, 7, 7, 8, 9, 10 | offval 6178 |
. . . 4
|
| 12 | 11 | cnveqd 4861 |
. . 3
|
| 13 | 12 | imaeq1d 5029 |
. 2
|
| 14 | 1 | feqmptd 5644 |
. . . . . 6
|
| 15 | 14 | cnveqd 4861 |
. . . . 5
|
| 16 | 15 | imaeq1d 5029 |
. . . 4
|
| 17 | suppssof1.s |
. . . 4
| |
| 18 | 16, 17 | eqsstrrd 3234 |
. . 3
|
| 19 | suppssof1.o |
. . 3
| |
| 20 | funfvex 5605 |
. . . . 5
| |
| 21 | 20 | funfni 5384 |
. . . 4
|
| 22 | 3, 21 | sylan 283 |
. . 3
|
| 23 | 4 | ffvelcdmda 5727 |
. . 3
|
| 24 | 18, 19, 22, 23 | suppssov1 6167 |
. 2
|
| 25 | 13, 24 | eqsstrd 3233 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-coll 4166 ax-sep 4169 ax-pow 4225 ax-pr 4260 ax-setind 4592 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3622 df-sn 3643 df-pr 3644 df-op 3646 df-uni 3856 df-iun 3934 df-br 4051 df-opab 4113 df-mpt 4114 df-id 4347 df-xp 4688 df-rel 4689 df-cnv 4690 df-co 4691 df-dm 4692 df-rn 4693 df-res 4694 df-ima 4695 df-iota 5240 df-fun 5281 df-fn 5282 df-f 5283 df-f1 5284 df-fo 5285 df-f1o 5286 df-fv 5287 df-ov 5959 df-oprab 5960 df-mpo 5961 df-of 6170 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |