ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suppssof1 Unicode version

Theorem suppssof1 6242
Description: Formula building theorem for support restrictions: vector operation with left annihilator. (Contributed by Stefan O'Rear, 9-Mar-2015.)
Hypotheses
Ref Expression
suppssof1.s  |-  ( ph  ->  ( `' A "
( _V  \  { Y } ) )  C_  L )
suppssof1.o  |-  ( (
ph  /\  v  e.  R )  ->  ( Y O v )  =  Z )
suppssof1.a  |-  ( ph  ->  A : D --> V )
suppssof1.b  |-  ( ph  ->  B : D --> R )
suppssof1.d  |-  ( ph  ->  D  e.  W )
Assertion
Ref Expression
suppssof1  |-  ( ph  ->  ( `' ( A  oF O B ) " ( _V 
\  { Z }
) )  C_  L
)
Distinct variable groups:    ph, v    v, B    v, O    v, R    v, Y    v, Z
Allowed substitution hints:    A( v)    D( v)    L( v)    V( v)    W( v)

Proof of Theorem suppssof1
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 suppssof1.a . . . . . 6  |-  ( ph  ->  A : D --> V )
2 ffn 5473 . . . . . 6  |-  ( A : D --> V  ->  A  Fn  D )
31, 2syl 14 . . . . 5  |-  ( ph  ->  A  Fn  D )
4 suppssof1.b . . . . . 6  |-  ( ph  ->  B : D --> R )
5 ffn 5473 . . . . . 6  |-  ( B : D --> R  ->  B  Fn  D )
64, 5syl 14 . . . . 5  |-  ( ph  ->  B  Fn  D )
7 suppssof1.d . . . . 5  |-  ( ph  ->  D  e.  W )
8 inidm 3413 . . . . 5  |-  ( D  i^i  D )  =  D
9 eqidd 2230 . . . . 5  |-  ( (
ph  /\  x  e.  D )  ->  ( A `  x )  =  ( A `  x ) )
10 eqidd 2230 . . . . 5  |-  ( (
ph  /\  x  e.  D )  ->  ( B `  x )  =  ( B `  x ) )
113, 6, 7, 7, 8, 9, 10offval 6232 . . . 4  |-  ( ph  ->  ( A  oF O B )  =  ( x  e.  D  |->  ( ( A `  x ) O ( B `  x ) ) ) )
1211cnveqd 4898 . . 3  |-  ( ph  ->  `' ( A  oF O B )  =  `' ( x  e.  D  |->  ( ( A `  x ) O ( B `  x ) ) ) )
1312imaeq1d 5067 . 2  |-  ( ph  ->  ( `' ( A  oF O B ) " ( _V 
\  { Z }
) )  =  ( `' ( x  e.  D  |->  ( ( A `
 x ) O ( B `  x
) ) ) "
( _V  \  { Z } ) ) )
141feqmptd 5689 . . . . . 6  |-  ( ph  ->  A  =  ( x  e.  D  |->  ( A `
 x ) ) )
1514cnveqd 4898 . . . . 5  |-  ( ph  ->  `' A  =  `' ( x  e.  D  |->  ( A `  x
) ) )
1615imaeq1d 5067 . . . 4  |-  ( ph  ->  ( `' A "
( _V  \  { Y } ) )  =  ( `' ( x  e.  D  |->  ( A `
 x ) )
" ( _V  \  { Y } ) ) )
17 suppssof1.s . . . 4  |-  ( ph  ->  ( `' A "
( _V  \  { Y } ) )  C_  L )
1816, 17eqsstrrd 3261 . . 3  |-  ( ph  ->  ( `' ( x  e.  D  |->  ( A `
 x ) )
" ( _V  \  { Y } ) ) 
C_  L )
19 suppssof1.o . . 3  |-  ( (
ph  /\  v  e.  R )  ->  ( Y O v )  =  Z )
20 funfvex 5646 . . . . 5  |-  ( ( Fun  A  /\  x  e.  dom  A )  -> 
( A `  x
)  e.  _V )
2120funfni 5423 . . . 4  |-  ( ( A  Fn  D  /\  x  e.  D )  ->  ( A `  x
)  e.  _V )
223, 21sylan 283 . . 3  |-  ( (
ph  /\  x  e.  D )  ->  ( A `  x )  e.  _V )
234ffvelcdmda 5772 . . 3  |-  ( (
ph  /\  x  e.  D )  ->  ( B `  x )  e.  R )
2418, 19, 22, 23suppssov1 6221 . 2  |-  ( ph  ->  ( `' ( x  e.  D  |->  ( ( A `  x ) O ( B `  x ) ) )
" ( _V  \  { Z } ) ) 
C_  L )
2513, 24eqsstrd 3260 1  |-  ( ph  ->  ( `' ( A  oF O B ) " ( _V 
\  { Z }
) )  C_  L
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   _Vcvv 2799    \ cdif 3194    C_ wss 3197   {csn 3666    |-> cmpt 4145   `'ccnv 4718   "cima 4722    Fn wfn 5313   -->wf 5314   ` cfv 5318  (class class class)co 6007    oFcof 6222
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-setind 4629
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-ov 6010  df-oprab 6011  df-mpo 6012  df-of 6224
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator