ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iscn Unicode version

Theorem iscn 12366
Description: The predicate "the class  F is a continuous function from topology  J to topology  K". Definition of continuous function in [Munkres] p. 102. (Contributed by NM, 17-Oct-2006.) (Revised by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
iscn  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( F  e.  ( J  Cn  K
)  <->  ( F : X
--> Y  /\  A. y  e.  K  ( `' F " y )  e.  J ) ) )
Distinct variable groups:    y, J    y, K    y, X    y, F    y, Y

Proof of Theorem iscn
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 cnfval 12363 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( J  Cn  K )  =  {
f  e.  ( Y  ^m  X )  | 
A. y  e.  K  ( `' f " y
)  e.  J }
)
21eleq2d 2209 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( F  e.  ( J  Cn  K
)  <->  F  e.  { f  e.  ( Y  ^m  X )  |  A. y  e.  K  ( `' f " y
)  e.  J }
) )
3 cnveq 4713 . . . . . . 7  |-  ( f  =  F  ->  `' f  =  `' F
)
43imaeq1d 4880 . . . . . 6  |-  ( f  =  F  ->  ( `' f " y
)  =  ( `' F " y ) )
54eleq1d 2208 . . . . 5  |-  ( f  =  F  ->  (
( `' f "
y )  e.  J  <->  ( `' F " y )  e.  J ) )
65ralbidv 2437 . . . 4  |-  ( f  =  F  ->  ( A. y  e.  K  ( `' f " y
)  e.  J  <->  A. y  e.  K  ( `' F " y )  e.  J ) )
76elrab 2840 . . 3  |-  ( F  e.  { f  e.  ( Y  ^m  X
)  |  A. y  e.  K  ( `' f " y )  e.  J }  <->  ( F  e.  ( Y  ^m  X
)  /\  A. y  e.  K  ( `' F " y )  e.  J ) )
8 toponmax 12192 . . . . 5  |-  ( K  e.  (TopOn `  Y
)  ->  Y  e.  K )
9 toponmax 12192 . . . . 5  |-  ( J  e.  (TopOn `  X
)  ->  X  e.  J )
10 elmapg 6555 . . . . 5  |-  ( ( Y  e.  K  /\  X  e.  J )  ->  ( F  e.  ( Y  ^m  X )  <-> 
F : X --> Y ) )
118, 9, 10syl2anr 288 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( F  e.  ( Y  ^m  X
)  <->  F : X --> Y ) )
1211anbi1d 460 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( ( F  e.  ( Y  ^m  X )  /\  A. y  e.  K  ( `' F " y )  e.  J )  <->  ( F : X --> Y  /\  A. y  e.  K  ( `' F " y )  e.  J ) ) )
137, 12syl5bb 191 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( F  e.  { f  e.  ( Y  ^m  X )  |  A. y  e.  K  ( `' f
" y )  e.  J }  <->  ( F : X --> Y  /\  A. y  e.  K  ( `' F " y )  e.  J ) ) )
142, 13bitrd 187 1  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( F  e.  ( J  Cn  K
)  <->  ( F : X
--> Y  /\  A. y  e.  K  ( `' F " y )  e.  J ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1331    e. wcel 1480   A.wral 2416   {crab 2420   `'ccnv 4538   "cima 4542   -->wf 5119   ` cfv 5123  (class class class)co 5774    ^m cmap 6542  TopOnctopon 12177    Cn ccn 12354
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-map 6544  df-top 12165  df-topon 12178  df-cn 12357
This theorem is referenced by:  iscn2  12369  cnf2  12374  tgcn  12377  ssidcn  12379  cnntr  12394  cnss1  12395  cnss2  12396  cncnp  12399  cnrest  12404  cnrest2  12405  cndis  12410  tx1cn  12438  tx2cn  12439  txdis1cn  12447
  Copyright terms: Public domain W3C validator