| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imaeq1d | GIF version | ||
| Description: Equality theorem for image. (Contributed by FL, 15-Dec-2006.) |
| Ref | Expression |
|---|---|
| imaeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| imaeq1d | ⊢ (𝜑 → (𝐴 “ 𝐶) = (𝐵 “ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imaeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | imaeq1 5004 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 “ 𝐶) = (𝐵 “ 𝐶)) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝐴 “ 𝐶) = (𝐵 “ 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 “ cima 4666 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-opab 4095 df-cnv 4671 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 |
| This theorem is referenced by: imaeq12d 5010 nfimad 5018 f1imacnv 5521 foimacnv 5522 suppssof1 6153 ssenen 6912 1arith 12536 eqglact 13355 psrbag 14223 iscn 14433 |
| Copyright terms: Public domain | W3C validator |