ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imaeq1d GIF version

Theorem imaeq1d 5004
Description: Equality theorem for image. (Contributed by FL, 15-Dec-2006.)
Hypothesis
Ref Expression
imaeq1d.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
imaeq1d (𝜑 → (𝐴𝐶) = (𝐵𝐶))

Proof of Theorem imaeq1d
StepHypRef Expression
1 imaeq1d.1 . 2 (𝜑𝐴 = 𝐵)
2 imaeq1 5000 . 2 (𝐴 = 𝐵 → (𝐴𝐶) = (𝐵𝐶))
31, 2syl 14 1 (𝜑 → (𝐴𝐶) = (𝐵𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  cima 4662
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-cnv 4667  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672
This theorem is referenced by:  imaeq12d  5006  nfimad  5014  f1imacnv  5517  foimacnv  5518  suppssof1  6148  ssenen  6907  1arith  12505  eqglact  13295  psrbag  14155  iscn  14365
  Copyright terms: Public domain W3C validator