ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imaex Unicode version

Theorem imaex 4984
Description: The image of a set is a set. Theorem 3.17 of [Monk1] p. 39. (Contributed by JJ, 24-Sep-2021.)
Hypothesis
Ref Expression
imaex.1  |-  A  e. 
_V
Assertion
Ref Expression
imaex  |-  ( A
" B )  e. 
_V

Proof of Theorem imaex
StepHypRef Expression
1 imaex.1 . 2  |-  A  e. 
_V
2 imaexg 4983 . 2  |-  ( A  e.  _V  ->  ( A " B )  e. 
_V )
31, 2ax-mp 5 1  |-  ( A
" B )  e. 
_V
Colors of variables: wff set class
Syntax hints:    e. wcel 2148   _Vcvv 2738   "cima 4630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2740  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-br 4005  df-opab 4066  df-xp 4633  df-cnv 4635  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640
This theorem is referenced by:  ssenen  6851  fiintim  6928  qtopbasss  14024  tgqioo  14050
  Copyright terms: Public domain W3C validator