ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imai Unicode version

Theorem imai 5038
Description: Image under the identity relation. Theorem 3.16(viii) of [Monk1] p. 38. (Contributed by NM, 30-Apr-1998.)
Assertion
Ref Expression
imai  |-  (  _I  " A )  =  A

Proof of Theorem imai
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfima3 5025 . 2  |-  (  _I  " A )  =  {
y  |  E. x
( x  e.  A  /\  <. x ,  y
>.  e.  _I  ) }
2 df-br 4045 . . . . . . . 8  |-  ( x  _I  y  <->  <. x ,  y >.  e.  _I  )
3 vex 2775 . . . . . . . . 9  |-  y  e. 
_V
43ideq 4830 . . . . . . . 8  |-  ( x  _I  y  <->  x  =  y )
52, 4bitr3i 186 . . . . . . 7  |-  ( <.
x ,  y >.  e.  _I  <->  x  =  y
)
65anbi2i 457 . . . . . 6  |-  ( ( x  e.  A  /\  <.
x ,  y >.  e.  _I  )  <->  ( x  e.  A  /\  x  =  y ) )
7 ancom 266 . . . . . 6  |-  ( ( x  e.  A  /\  x  =  y )  <->  ( x  =  y  /\  x  e.  A )
)
86, 7bitri 184 . . . . 5  |-  ( ( x  e.  A  /\  <.
x ,  y >.  e.  _I  )  <->  ( x  =  y  /\  x  e.  A ) )
98exbii 1628 . . . 4  |-  ( E. x ( x  e.  A  /\  <. x ,  y >.  e.  _I  ) 
<->  E. x ( x  =  y  /\  x  e.  A ) )
10 eleq1 2268 . . . . 5  |-  ( x  =  y  ->  (
x  e.  A  <->  y  e.  A ) )
113, 10ceqsexv 2811 . . . 4  |-  ( E. x ( x  =  y  /\  x  e.  A )  <->  y  e.  A )
129, 11bitri 184 . . 3  |-  ( E. x ( x  e.  A  /\  <. x ,  y >.  e.  _I  ) 
<->  y  e.  A )
1312abbii 2321 . 2  |-  { y  |  E. x ( x  e.  A  /\  <.
x ,  y >.  e.  _I  ) }  =  { y  |  y  e.  A }
14 abid2 2326 . 2  |-  { y  |  y  e.  A }  =  A
151, 13, 143eqtri 2230 1  |-  (  _I  " A )  =  A
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1373   E.wex 1515    e. wcel 2176   {cab 2191   <.cop 3636   class class class wbr 4044    _I cid 4335   "cima 4678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-br 4045  df-opab 4106  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688
This theorem is referenced by:  rnresi  5039  cnvresid  5348  ecidsn  6669
  Copyright terms: Public domain W3C validator