ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ressressg Unicode version

Theorem ressressg 13022
Description: Restriction composition law. (Contributed by Stefan O'Rear, 29-Nov-2014.) (Proof shortened by Mario Carneiro, 2-Dec-2014.)
Assertion
Ref Expression
ressressg  |-  ( ( A  e.  X  /\  B  e.  Y  /\  W  e.  Z )  ->  ( ( Ws  A )s  B )  =  ( Ws  ( A  i^i  B ) ) )

Proof of Theorem ressressg
StepHypRef Expression
1 eqidd 2208 . . . . . . 7  |-  ( ( A  e.  X  /\  B  e.  Y  /\  W  e.  Z )  ->  ( Ws  A )  =  ( Ws  A ) )
2 eqidd 2208 . . . . . . 7  |-  ( ( A  e.  X  /\  B  e.  Y  /\  W  e.  Z )  ->  ( Base `  W
)  =  ( Base `  W ) )
3 simp3 1002 . . . . . . 7  |-  ( ( A  e.  X  /\  B  e.  Y  /\  W  e.  Z )  ->  W  e.  Z )
4 simp1 1000 . . . . . . 7  |-  ( ( A  e.  X  /\  B  e.  Y  /\  W  e.  Z )  ->  A  e.  X )
51, 2, 3, 4ressbasd 13014 . . . . . 6  |-  ( ( A  e.  X  /\  B  e.  Y  /\  W  e.  Z )  ->  ( A  i^i  ( Base `  W ) )  =  ( Base `  ( Ws  A ) ) )
65ineq2d 3382 . . . . 5  |-  ( ( A  e.  X  /\  B  e.  Y  /\  W  e.  Z )  ->  ( B  i^i  ( A  i^i  ( Base `  W
) ) )  =  ( B  i^i  ( Base `  ( Ws  A ) ) ) )
7 inass 3391 . . . . . 6  |-  ( ( B  i^i  A )  i^i  ( Base `  W
) )  =  ( B  i^i  ( A  i^i  ( Base `  W
) ) )
8 incom 3373 . . . . . . 7  |-  ( B  i^i  A )  =  ( A  i^i  B
)
98ineq1i 3378 . . . . . 6  |-  ( ( B  i^i  A )  i^i  ( Base `  W
) )  =  ( ( A  i^i  B
)  i^i  ( Base `  W ) )
107, 9eqtr3i 2230 . . . . 5  |-  ( B  i^i  ( A  i^i  ( Base `  W )
) )  =  ( ( A  i^i  B
)  i^i  ( Base `  W ) )
116, 10eqtr3di 2255 . . . 4  |-  ( ( A  e.  X  /\  B  e.  Y  /\  W  e.  Z )  ->  ( B  i^i  ( Base `  ( Ws  A ) ) )  =  ( ( A  i^i  B
)  i^i  ( Base `  W ) ) )
1211opeq2d 3840 . . 3  |-  ( ( A  e.  X  /\  B  e.  Y  /\  W  e.  Z )  -> 
<. ( Base `  ndx ) ,  ( B  i^i  ( Base `  ( Ws  A ) ) )
>.  =  <. ( Base `  ndx ) ,  ( ( A  i^i  B
)  i^i  ( Base `  W ) ) >.
)
1312oveq2d 5983 . 2  |-  ( ( A  e.  X  /\  B  e.  Y  /\  W  e.  Z )  ->  ( W sSet  <. ( Base `  ndx ) ,  ( B  i^i  ( Base `  ( Ws  A ) ) ) >. )  =  ( W sSet  <. (
Base `  ndx ) ,  ( ( A  i^i  B )  i^i  ( Base `  W ) ) >.
) )
14 ressex 13012 . . . . 5  |-  ( ( W  e.  Z  /\  A  e.  X )  ->  ( Ws  A )  e.  _V )
153, 4, 14syl2anc 411 . . . 4  |-  ( ( A  e.  X  /\  B  e.  Y  /\  W  e.  Z )  ->  ( Ws  A )  e.  _V )
16 simp2 1001 . . . 4  |-  ( ( A  e.  X  /\  B  e.  Y  /\  W  e.  Z )  ->  B  e.  Y )
17 ressvalsets 13011 . . . 4  |-  ( ( ( Ws  A )  e.  _V  /\  B  e.  Y )  ->  ( ( Ws  A )s  B )  =  ( ( Ws  A ) sSet  <. ( Base `  ndx ) ,  ( B  i^i  ( Base `  ( Ws  A ) ) ) >. )
)
1815, 16, 17syl2anc 411 . . 3  |-  ( ( A  e.  X  /\  B  e.  Y  /\  W  e.  Z )  ->  ( ( Ws  A )s  B )  =  ( ( Ws  A ) sSet  <. ( Base `  ndx ) ,  ( B  i^i  ( Base `  ( Ws  A ) ) ) >. )
)
19 ressvalsets 13011 . . . . 5  |-  ( ( W  e.  Z  /\  A  e.  X )  ->  ( Ws  A )  =  ( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  W
) ) >. )
)
203, 4, 19syl2anc 411 . . . 4  |-  ( ( A  e.  X  /\  B  e.  Y  /\  W  e.  Z )  ->  ( Ws  A )  =  ( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  W
) ) >. )
)
2120oveq1d 5982 . . 3  |-  ( ( A  e.  X  /\  B  e.  Y  /\  W  e.  Z )  ->  ( ( Ws  A ) sSet  <. ( Base `  ndx ) ,  ( B  i^i  ( Base `  ( Ws  A ) ) )
>. )  =  (
( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  W ) ) >.
) sSet  <. ( Base `  ndx ) ,  ( B  i^i  ( Base `  ( Ws  A ) ) )
>. ) )
22 basendxnn 13003 . . . . 5  |-  ( Base `  ndx )  e.  NN
2322a1i 9 . . . 4  |-  ( ( A  e.  X  /\  B  e.  Y  /\  W  e.  Z )  ->  ( Base `  ndx )  e.  NN )
24 inex1g 4196 . . . . 5  |-  ( A  e.  X  ->  ( A  i^i  ( Base `  W
) )  e.  _V )
254, 24syl 14 . . . 4  |-  ( ( A  e.  X  /\  B  e.  Y  /\  W  e.  Z )  ->  ( A  i^i  ( Base `  W ) )  e.  _V )
26 inex1g 4196 . . . . 5  |-  ( B  e.  Y  ->  ( B  i^i  ( Base `  ( Ws  A ) ) )  e.  _V )
2716, 26syl 14 . . . 4  |-  ( ( A  e.  X  /\  B  e.  Y  /\  W  e.  Z )  ->  ( B  i^i  ( Base `  ( Ws  A ) ) )  e.  _V )
283, 23, 25, 27setsabsd 12986 . . 3  |-  ( ( A  e.  X  /\  B  e.  Y  /\  W  e.  Z )  ->  ( ( W sSet  <. (
Base `  ndx ) ,  ( A  i^i  ( Base `  W ) )
>. ) sSet  <. ( Base `  ndx ) ,  ( B  i^i  ( Base `  ( Ws  A ) ) )
>. )  =  ( W sSet  <. ( Base `  ndx ) ,  ( B  i^i  ( Base `  ( Ws  A ) ) )
>. ) )
2918, 21, 283eqtrd 2244 . 2  |-  ( ( A  e.  X  /\  B  e.  Y  /\  W  e.  Z )  ->  ( ( Ws  A )s  B )  =  ( W sSet  <. ( Base `  ndx ) ,  ( B  i^i  ( Base `  ( Ws  A ) ) )
>. ) )
30 inex1g 4196 . . . 4  |-  ( A  e.  X  ->  ( A  i^i  B )  e. 
_V )
314, 30syl 14 . . 3  |-  ( ( A  e.  X  /\  B  e.  Y  /\  W  e.  Z )  ->  ( A  i^i  B
)  e.  _V )
32 ressvalsets 13011 . . 3  |-  ( ( W  e.  Z  /\  ( A  i^i  B )  e.  _V )  -> 
( Ws  ( A  i^i  B ) )  =  ( W sSet  <. ( Base `  ndx ) ,  ( ( A  i^i  B )  i^i  ( Base `  W
) ) >. )
)
333, 31, 32syl2anc 411 . 2  |-  ( ( A  e.  X  /\  B  e.  Y  /\  W  e.  Z )  ->  ( Ws  ( A  i^i  B ) )  =  ( W sSet  <. ( Base `  ndx ) ,  ( ( A  i^i  B )  i^i  ( Base `  W
) ) >. )
)
3413, 29, 333eqtr4d 2250 1  |-  ( ( A  e.  X  /\  B  e.  Y  /\  W  e.  Z )  ->  ( ( Ws  A )s  B )  =  ( Ws  ( A  i^i  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 981    = wceq 1373    e. wcel 2178   _Vcvv 2776    i^i cin 3173   <.cop 3646   ` cfv 5290  (class class class)co 5967   NNcn 9071   ndxcnx 12944   sSet csts 12945   Basecbs 12947   ↾s cress 12948
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1re 8054  ax-addrcl 8057
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-sbc 3006  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-iota 5251  df-fun 5292  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-inn 9072  df-ndx 12950  df-slot 12951  df-base 12953  df-sets 12954  df-iress 12955
This theorem is referenced by:  ressabsg  13023
  Copyright terms: Public domain W3C validator