| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ressressg | Unicode version | ||
| Description: Restriction composition law. (Contributed by Stefan O'Rear, 29-Nov-2014.) (Proof shortened by Mario Carneiro, 2-Dec-2014.) | 
| Ref | Expression | 
|---|---|
| ressressg | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqidd 2197 | 
. . . . . . 7
 | |
| 2 | eqidd 2197 | 
. . . . . . 7
 | |
| 3 | simp3 1001 | 
. . . . . . 7
 | |
| 4 | simp1 999 | 
. . . . . . 7
 | |
| 5 | 1, 2, 3, 4 | ressbasd 12745 | 
. . . . . 6
 | 
| 6 | 5 | ineq2d 3364 | 
. . . . 5
 | 
| 7 | inass 3373 | 
. . . . . 6
 | |
| 8 | incom 3355 | 
. . . . . . 7
 | |
| 9 | 8 | ineq1i 3360 | 
. . . . . 6
 | 
| 10 | 7, 9 | eqtr3i 2219 | 
. . . . 5
 | 
| 11 | 6, 10 | eqtr3di 2244 | 
. . . 4
 | 
| 12 | 11 | opeq2d 3815 | 
. . 3
 | 
| 13 | 12 | oveq2d 5938 | 
. 2
 | 
| 14 | ressex 12743 | 
. . . . 5
 | |
| 15 | 3, 4, 14 | syl2anc 411 | 
. . . 4
 | 
| 16 | simp2 1000 | 
. . . 4
 | |
| 17 | ressvalsets 12742 | 
. . . 4
 | |
| 18 | 15, 16, 17 | syl2anc 411 | 
. . 3
 | 
| 19 | ressvalsets 12742 | 
. . . . 5
 | |
| 20 | 3, 4, 19 | syl2anc 411 | 
. . . 4
 | 
| 21 | 20 | oveq1d 5937 | 
. . 3
 | 
| 22 | basendxnn 12734 | 
. . . . 5
 | |
| 23 | 22 | a1i 9 | 
. . . 4
 | 
| 24 | inex1g 4169 | 
. . . . 5
 | |
| 25 | 4, 24 | syl 14 | 
. . . 4
 | 
| 26 | inex1g 4169 | 
. . . . 5
 | |
| 27 | 16, 26 | syl 14 | 
. . . 4
 | 
| 28 | 3, 23, 25, 27 | setsabsd 12717 | 
. . 3
 | 
| 29 | 18, 21, 28 | 3eqtrd 2233 | 
. 2
 | 
| 30 | inex1g 4169 | 
. . . 4
 | |
| 31 | 4, 30 | syl 14 | 
. . 3
 | 
| 32 | ressvalsets 12742 | 
. . 3
 | |
| 33 | 3, 31, 32 | syl2anc 411 | 
. 2
 | 
| 34 | 13, 29, 33 | 3eqtr4d 2239 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1re 7973 ax-addrcl 7976 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-iota 5219 df-fun 5260 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-inn 8991 df-ndx 12681 df-slot 12682 df-base 12684 df-sets 12685 df-iress 12686 | 
| This theorem is referenced by: ressabsg 12754 | 
| Copyright terms: Public domain | W3C validator |