ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ressressg Unicode version

Theorem ressressg 12590
Description: Restriction composition law. (Contributed by Stefan O'Rear, 29-Nov-2014.) (Proof shortened by Mario Carneiro, 2-Dec-2014.)
Assertion
Ref Expression
ressressg  |-  ( ( A  e.  X  /\  B  e.  Y  /\  W  e.  Z )  ->  ( ( Ws  A )s  B )  =  ( Ws  ( A  i^i  B ) ) )

Proof of Theorem ressressg
StepHypRef Expression
1 eqidd 2190 . . . . . . 7  |-  ( ( A  e.  X  /\  B  e.  Y  /\  W  e.  Z )  ->  ( Ws  A )  =  ( Ws  A ) )
2 eqidd 2190 . . . . . . 7  |-  ( ( A  e.  X  /\  B  e.  Y  /\  W  e.  Z )  ->  ( Base `  W
)  =  ( Base `  W ) )
3 simp3 1001 . . . . . . 7  |-  ( ( A  e.  X  /\  B  e.  Y  /\  W  e.  Z )  ->  W  e.  Z )
4 simp1 999 . . . . . . 7  |-  ( ( A  e.  X  /\  B  e.  Y  /\  W  e.  Z )  ->  A  e.  X )
51, 2, 3, 4ressbasd 12582 . . . . . 6  |-  ( ( A  e.  X  /\  B  e.  Y  /\  W  e.  Z )  ->  ( A  i^i  ( Base `  W ) )  =  ( Base `  ( Ws  A ) ) )
65ineq2d 3351 . . . . 5  |-  ( ( A  e.  X  /\  B  e.  Y  /\  W  e.  Z )  ->  ( B  i^i  ( A  i^i  ( Base `  W
) ) )  =  ( B  i^i  ( Base `  ( Ws  A ) ) ) )
7 inass 3360 . . . . . 6  |-  ( ( B  i^i  A )  i^i  ( Base `  W
) )  =  ( B  i^i  ( A  i^i  ( Base `  W
) ) )
8 incom 3342 . . . . . . 7  |-  ( B  i^i  A )  =  ( A  i^i  B
)
98ineq1i 3347 . . . . . 6  |-  ( ( B  i^i  A )  i^i  ( Base `  W
) )  =  ( ( A  i^i  B
)  i^i  ( Base `  W ) )
107, 9eqtr3i 2212 . . . . 5  |-  ( B  i^i  ( A  i^i  ( Base `  W )
) )  =  ( ( A  i^i  B
)  i^i  ( Base `  W ) )
116, 10eqtr3di 2237 . . . 4  |-  ( ( A  e.  X  /\  B  e.  Y  /\  W  e.  Z )  ->  ( B  i^i  ( Base `  ( Ws  A ) ) )  =  ( ( A  i^i  B
)  i^i  ( Base `  W ) ) )
1211opeq2d 3800 . . 3  |-  ( ( A  e.  X  /\  B  e.  Y  /\  W  e.  Z )  -> 
<. ( Base `  ndx ) ,  ( B  i^i  ( Base `  ( Ws  A ) ) )
>.  =  <. ( Base `  ndx ) ,  ( ( A  i^i  B
)  i^i  ( Base `  W ) ) >.
)
1312oveq2d 5913 . 2  |-  ( ( A  e.  X  /\  B  e.  Y  /\  W  e.  Z )  ->  ( W sSet  <. ( Base `  ndx ) ,  ( B  i^i  ( Base `  ( Ws  A ) ) ) >. )  =  ( W sSet  <. (
Base `  ndx ) ,  ( ( A  i^i  B )  i^i  ( Base `  W ) ) >.
) )
14 ressex 12580 . . . . 5  |-  ( ( W  e.  Z  /\  A  e.  X )  ->  ( Ws  A )  e.  _V )
153, 4, 14syl2anc 411 . . . 4  |-  ( ( A  e.  X  /\  B  e.  Y  /\  W  e.  Z )  ->  ( Ws  A )  e.  _V )
16 simp2 1000 . . . 4  |-  ( ( A  e.  X  /\  B  e.  Y  /\  W  e.  Z )  ->  B  e.  Y )
17 ressvalsets 12579 . . . 4  |-  ( ( ( Ws  A )  e.  _V  /\  B  e.  Y )  ->  ( ( Ws  A )s  B )  =  ( ( Ws  A ) sSet  <. ( Base `  ndx ) ,  ( B  i^i  ( Base `  ( Ws  A ) ) ) >. )
)
1815, 16, 17syl2anc 411 . . 3  |-  ( ( A  e.  X  /\  B  e.  Y  /\  W  e.  Z )  ->  ( ( Ws  A )s  B )  =  ( ( Ws  A ) sSet  <. ( Base `  ndx ) ,  ( B  i^i  ( Base `  ( Ws  A ) ) ) >. )
)
19 ressvalsets 12579 . . . . 5  |-  ( ( W  e.  Z  /\  A  e.  X )  ->  ( Ws  A )  =  ( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  W
) ) >. )
)
203, 4, 19syl2anc 411 . . . 4  |-  ( ( A  e.  X  /\  B  e.  Y  /\  W  e.  Z )  ->  ( Ws  A )  =  ( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  W
) ) >. )
)
2120oveq1d 5912 . . 3  |-  ( ( A  e.  X  /\  B  e.  Y  /\  W  e.  Z )  ->  ( ( Ws  A ) sSet  <. ( Base `  ndx ) ,  ( B  i^i  ( Base `  ( Ws  A ) ) )
>. )  =  (
( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  W ) ) >.
) sSet  <. ( Base `  ndx ) ,  ( B  i^i  ( Base `  ( Ws  A ) ) )
>. ) )
22 basendxnn 12571 . . . . 5  |-  ( Base `  ndx )  e.  NN
2322a1i 9 . . . 4  |-  ( ( A  e.  X  /\  B  e.  Y  /\  W  e.  Z )  ->  ( Base `  ndx )  e.  NN )
24 inex1g 4154 . . . . 5  |-  ( A  e.  X  ->  ( A  i^i  ( Base `  W
) )  e.  _V )
254, 24syl 14 . . . 4  |-  ( ( A  e.  X  /\  B  e.  Y  /\  W  e.  Z )  ->  ( A  i^i  ( Base `  W ) )  e.  _V )
26 inex1g 4154 . . . . 5  |-  ( B  e.  Y  ->  ( B  i^i  ( Base `  ( Ws  A ) ) )  e.  _V )
2716, 26syl 14 . . . 4  |-  ( ( A  e.  X  /\  B  e.  Y  /\  W  e.  Z )  ->  ( B  i^i  ( Base `  ( Ws  A ) ) )  e.  _V )
283, 23, 25, 27setsabsd 12554 . . 3  |-  ( ( A  e.  X  /\  B  e.  Y  /\  W  e.  Z )  ->  ( ( W sSet  <. (
Base `  ndx ) ,  ( A  i^i  ( Base `  W ) )
>. ) sSet  <. ( Base `  ndx ) ,  ( B  i^i  ( Base `  ( Ws  A ) ) )
>. )  =  ( W sSet  <. ( Base `  ndx ) ,  ( B  i^i  ( Base `  ( Ws  A ) ) )
>. ) )
2918, 21, 283eqtrd 2226 . 2  |-  ( ( A  e.  X  /\  B  e.  Y  /\  W  e.  Z )  ->  ( ( Ws  A )s  B )  =  ( W sSet  <. ( Base `  ndx ) ,  ( B  i^i  ( Base `  ( Ws  A ) ) )
>. ) )
30 inex1g 4154 . . . 4  |-  ( A  e.  X  ->  ( A  i^i  B )  e. 
_V )
314, 30syl 14 . . 3  |-  ( ( A  e.  X  /\  B  e.  Y  /\  W  e.  Z )  ->  ( A  i^i  B
)  e.  _V )
32 ressvalsets 12579 . . 3  |-  ( ( W  e.  Z  /\  ( A  i^i  B )  e.  _V )  -> 
( Ws  ( A  i^i  B ) )  =  ( W sSet  <. ( Base `  ndx ) ,  ( ( A  i^i  B )  i^i  ( Base `  W
) ) >. )
)
333, 31, 32syl2anc 411 . 2  |-  ( ( A  e.  X  /\  B  e.  Y  /\  W  e.  Z )  ->  ( Ws  ( A  i^i  B ) )  =  ( W sSet  <. ( Base `  ndx ) ,  ( ( A  i^i  B )  i^i  ( Base `  W
) ) >. )
)
3413, 29, 333eqtr4d 2232 1  |-  ( ( A  e.  X  /\  B  e.  Y  /\  W  e.  Z )  ->  ( ( Ws  A )s  B )  =  ( Ws  ( A  i^i  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 980    = wceq 1364    e. wcel 2160   _Vcvv 2752    i^i cin 3143   <.cop 3610   ` cfv 5235  (class class class)co 5897   NNcn 8950   ndxcnx 12512   sSet csts 12513   Basecbs 12515   ↾s cress 12516
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-cnex 7933  ax-resscn 7934  ax-1re 7936  ax-addrcl 7939
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-rab 2477  df-v 2754  df-sbc 2978  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-iota 5196  df-fun 5237  df-fv 5243  df-ov 5900  df-oprab 5901  df-mpo 5902  df-inn 8951  df-ndx 12518  df-slot 12519  df-base 12521  df-sets 12522  df-iress 12523
This theorem is referenced by:  ressabsg  12591
  Copyright terms: Public domain W3C validator