ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ressressg Unicode version

Theorem ressressg 12940
Description: Restriction composition law. (Contributed by Stefan O'Rear, 29-Nov-2014.) (Proof shortened by Mario Carneiro, 2-Dec-2014.)
Assertion
Ref Expression
ressressg  |-  ( ( A  e.  X  /\  B  e.  Y  /\  W  e.  Z )  ->  ( ( Ws  A )s  B )  =  ( Ws  ( A  i^i  B ) ) )

Proof of Theorem ressressg
StepHypRef Expression
1 eqidd 2206 . . . . . . 7  |-  ( ( A  e.  X  /\  B  e.  Y  /\  W  e.  Z )  ->  ( Ws  A )  =  ( Ws  A ) )
2 eqidd 2206 . . . . . . 7  |-  ( ( A  e.  X  /\  B  e.  Y  /\  W  e.  Z )  ->  ( Base `  W
)  =  ( Base `  W ) )
3 simp3 1002 . . . . . . 7  |-  ( ( A  e.  X  /\  B  e.  Y  /\  W  e.  Z )  ->  W  e.  Z )
4 simp1 1000 . . . . . . 7  |-  ( ( A  e.  X  /\  B  e.  Y  /\  W  e.  Z )  ->  A  e.  X )
51, 2, 3, 4ressbasd 12932 . . . . . 6  |-  ( ( A  e.  X  /\  B  e.  Y  /\  W  e.  Z )  ->  ( A  i^i  ( Base `  W ) )  =  ( Base `  ( Ws  A ) ) )
65ineq2d 3374 . . . . 5  |-  ( ( A  e.  X  /\  B  e.  Y  /\  W  e.  Z )  ->  ( B  i^i  ( A  i^i  ( Base `  W
) ) )  =  ( B  i^i  ( Base `  ( Ws  A ) ) ) )
7 inass 3383 . . . . . 6  |-  ( ( B  i^i  A )  i^i  ( Base `  W
) )  =  ( B  i^i  ( A  i^i  ( Base `  W
) ) )
8 incom 3365 . . . . . . 7  |-  ( B  i^i  A )  =  ( A  i^i  B
)
98ineq1i 3370 . . . . . 6  |-  ( ( B  i^i  A )  i^i  ( Base `  W
) )  =  ( ( A  i^i  B
)  i^i  ( Base `  W ) )
107, 9eqtr3i 2228 . . . . 5  |-  ( B  i^i  ( A  i^i  ( Base `  W )
) )  =  ( ( A  i^i  B
)  i^i  ( Base `  W ) )
116, 10eqtr3di 2253 . . . 4  |-  ( ( A  e.  X  /\  B  e.  Y  /\  W  e.  Z )  ->  ( B  i^i  ( Base `  ( Ws  A ) ) )  =  ( ( A  i^i  B
)  i^i  ( Base `  W ) ) )
1211opeq2d 3826 . . 3  |-  ( ( A  e.  X  /\  B  e.  Y  /\  W  e.  Z )  -> 
<. ( Base `  ndx ) ,  ( B  i^i  ( Base `  ( Ws  A ) ) )
>.  =  <. ( Base `  ndx ) ,  ( ( A  i^i  B
)  i^i  ( Base `  W ) ) >.
)
1312oveq2d 5962 . 2  |-  ( ( A  e.  X  /\  B  e.  Y  /\  W  e.  Z )  ->  ( W sSet  <. ( Base `  ndx ) ,  ( B  i^i  ( Base `  ( Ws  A ) ) ) >. )  =  ( W sSet  <. (
Base `  ndx ) ,  ( ( A  i^i  B )  i^i  ( Base `  W ) ) >.
) )
14 ressex 12930 . . . . 5  |-  ( ( W  e.  Z  /\  A  e.  X )  ->  ( Ws  A )  e.  _V )
153, 4, 14syl2anc 411 . . . 4  |-  ( ( A  e.  X  /\  B  e.  Y  /\  W  e.  Z )  ->  ( Ws  A )  e.  _V )
16 simp2 1001 . . . 4  |-  ( ( A  e.  X  /\  B  e.  Y  /\  W  e.  Z )  ->  B  e.  Y )
17 ressvalsets 12929 . . . 4  |-  ( ( ( Ws  A )  e.  _V  /\  B  e.  Y )  ->  ( ( Ws  A )s  B )  =  ( ( Ws  A ) sSet  <. ( Base `  ndx ) ,  ( B  i^i  ( Base `  ( Ws  A ) ) ) >. )
)
1815, 16, 17syl2anc 411 . . 3  |-  ( ( A  e.  X  /\  B  e.  Y  /\  W  e.  Z )  ->  ( ( Ws  A )s  B )  =  ( ( Ws  A ) sSet  <. ( Base `  ndx ) ,  ( B  i^i  ( Base `  ( Ws  A ) ) ) >. )
)
19 ressvalsets 12929 . . . . 5  |-  ( ( W  e.  Z  /\  A  e.  X )  ->  ( Ws  A )  =  ( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  W
) ) >. )
)
203, 4, 19syl2anc 411 . . . 4  |-  ( ( A  e.  X  /\  B  e.  Y  /\  W  e.  Z )  ->  ( Ws  A )  =  ( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  W
) ) >. )
)
2120oveq1d 5961 . . 3  |-  ( ( A  e.  X  /\  B  e.  Y  /\  W  e.  Z )  ->  ( ( Ws  A ) sSet  <. ( Base `  ndx ) ,  ( B  i^i  ( Base `  ( Ws  A ) ) )
>. )  =  (
( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  W ) ) >.
) sSet  <. ( Base `  ndx ) ,  ( B  i^i  ( Base `  ( Ws  A ) ) )
>. ) )
22 basendxnn 12921 . . . . 5  |-  ( Base `  ndx )  e.  NN
2322a1i 9 . . . 4  |-  ( ( A  e.  X  /\  B  e.  Y  /\  W  e.  Z )  ->  ( Base `  ndx )  e.  NN )
24 inex1g 4181 . . . . 5  |-  ( A  e.  X  ->  ( A  i^i  ( Base `  W
) )  e.  _V )
254, 24syl 14 . . . 4  |-  ( ( A  e.  X  /\  B  e.  Y  /\  W  e.  Z )  ->  ( A  i^i  ( Base `  W ) )  e.  _V )
26 inex1g 4181 . . . . 5  |-  ( B  e.  Y  ->  ( B  i^i  ( Base `  ( Ws  A ) ) )  e.  _V )
2716, 26syl 14 . . . 4  |-  ( ( A  e.  X  /\  B  e.  Y  /\  W  e.  Z )  ->  ( B  i^i  ( Base `  ( Ws  A ) ) )  e.  _V )
283, 23, 25, 27setsabsd 12904 . . 3  |-  ( ( A  e.  X  /\  B  e.  Y  /\  W  e.  Z )  ->  ( ( W sSet  <. (
Base `  ndx ) ,  ( A  i^i  ( Base `  W ) )
>. ) sSet  <. ( Base `  ndx ) ,  ( B  i^i  ( Base `  ( Ws  A ) ) )
>. )  =  ( W sSet  <. ( Base `  ndx ) ,  ( B  i^i  ( Base `  ( Ws  A ) ) )
>. ) )
2918, 21, 283eqtrd 2242 . 2  |-  ( ( A  e.  X  /\  B  e.  Y  /\  W  e.  Z )  ->  ( ( Ws  A )s  B )  =  ( W sSet  <. ( Base `  ndx ) ,  ( B  i^i  ( Base `  ( Ws  A ) ) )
>. ) )
30 inex1g 4181 . . . 4  |-  ( A  e.  X  ->  ( A  i^i  B )  e. 
_V )
314, 30syl 14 . . 3  |-  ( ( A  e.  X  /\  B  e.  Y  /\  W  e.  Z )  ->  ( A  i^i  B
)  e.  _V )
32 ressvalsets 12929 . . 3  |-  ( ( W  e.  Z  /\  ( A  i^i  B )  e.  _V )  -> 
( Ws  ( A  i^i  B ) )  =  ( W sSet  <. ( Base `  ndx ) ,  ( ( A  i^i  B )  i^i  ( Base `  W
) ) >. )
)
333, 31, 32syl2anc 411 . 2  |-  ( ( A  e.  X  /\  B  e.  Y  /\  W  e.  Z )  ->  ( Ws  ( A  i^i  B ) )  =  ( W sSet  <. ( Base `  ndx ) ,  ( ( A  i^i  B )  i^i  ( Base `  W
) ) >. )
)
3413, 29, 333eqtr4d 2248 1  |-  ( ( A  e.  X  /\  B  e.  Y  /\  W  e.  Z )  ->  ( ( Ws  A )s  B )  =  ( Ws  ( A  i^i  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 981    = wceq 1373    e. wcel 2176   _Vcvv 2772    i^i cin 3165   <.cop 3636   ` cfv 5272  (class class class)co 5946   NNcn 9038   ndxcnx 12862   sSet csts 12863   Basecbs 12865   ↾s cress 12866
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-cnex 8018  ax-resscn 8019  ax-1re 8021  ax-addrcl 8024
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4046  df-opab 4107  df-mpt 4108  df-id 4341  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-iota 5233  df-fun 5274  df-fv 5280  df-ov 5949  df-oprab 5950  df-mpo 5951  df-inn 9039  df-ndx 12868  df-slot 12869  df-base 12871  df-sets 12872  df-iress 12873
This theorem is referenced by:  ressabsg  12941
  Copyright terms: Public domain W3C validator