ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resres Unicode version

Theorem resres 4912
Description: The restriction of a restriction. (Contributed by NM, 27-Mar-2008.)
Assertion
Ref Expression
resres  |-  ( ( A  |`  B )  |`  C )  =  ( A  |`  ( B  i^i  C ) )

Proof of Theorem resres
StepHypRef Expression
1 df-res 4632 . 2  |-  ( ( A  |`  B )  |`  C )  =  ( ( A  |`  B )  i^i  ( C  X.  _V ) )
2 df-res 4632 . . 3  |-  ( A  |`  B )  =  ( A  i^i  ( B  X.  _V ) )
32ineq1i 3330 . 2  |-  ( ( A  |`  B )  i^i  ( C  X.  _V ) )  =  ( ( A  i^i  ( B  X.  _V ) )  i^i  ( C  X.  _V ) )
4 xpindir 4756 . . . 4  |-  ( ( B  i^i  C )  X.  _V )  =  ( ( B  X.  _V )  i^i  ( C  X.  _V ) )
54ineq2i 3331 . . 3  |-  ( A  i^i  ( ( B  i^i  C )  X. 
_V ) )  =  ( A  i^i  (
( B  X.  _V )  i^i  ( C  X.  _V ) ) )
6 df-res 4632 . . 3  |-  ( A  |`  ( B  i^i  C
) )  =  ( A  i^i  ( ( B  i^i  C )  X.  _V ) )
7 inass 3343 . . 3  |-  ( ( A  i^i  ( B  X.  _V ) )  i^i  ( C  X.  _V ) )  =  ( A  i^i  ( ( B  X.  _V )  i^i  ( C  X.  _V ) ) )
85, 6, 73eqtr4ri 2207 . 2  |-  ( ( A  i^i  ( B  X.  _V ) )  i^i  ( C  X.  _V ) )  =  ( A  |`  ( B  i^i  C ) )
91, 3, 83eqtri 2200 1  |-  ( ( A  |`  B )  |`  C )  =  ( A  |`  ( B  i^i  C ) )
Colors of variables: wff set class
Syntax hints:    = wceq 1353   _Vcvv 2735    i^i cin 3126    X. cxp 4618    |` cres 4622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-v 2737  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-opab 4060  df-xp 4626  df-rel 4627  df-res 4632
This theorem is referenced by:  rescom  4925  resabs1  4929  resima2  4934  resmpt3  4949  resdisj  5049  rescnvcnv  5083  funimaexg  5292  fresin  5386  resdif  5475  pmresg  6666  setsslid  12477
  Copyright terms: Public domain W3C validator