ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isabli GIF version

Theorem isabli 13370
Description: Properties that determine an Abelian group. (Contributed by NM, 4-Sep-2011.)
Hypotheses
Ref Expression
isabli.g 𝐺 ∈ Grp
isabli.b 𝐵 = (Base‘𝐺)
isabli.p + = (+g𝐺)
isabli.c ((𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
Assertion
Ref Expression
isabli 𝐺 ∈ Abel
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐺,𝑦
Allowed substitution hints:   + (𝑥,𝑦)

Proof of Theorem isabli
StepHypRef Expression
1 isabli.g . 2 𝐺 ∈ Grp
2 isabli.c . . 3 ((𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
32rgen2 2580 . 2 𝑥𝐵𝑦𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥)
4 isabli.b . . 3 𝐵 = (Base‘𝐺)
5 isabli.p . . 3 + = (+g𝐺)
64, 5isabl2 13364 . 2 (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥)))
71, 3, 6mpbir2an 944 1 𝐺 ∈ Abel
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164  wral 2472  cfv 5254  (class class class)co 5918  Basecbs 12618  +gcplusg 12695  Grpcgrp 13072  Abelcabl 13355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-un 3157  df-in 3159  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-iota 5215  df-fv 5262  df-ov 5921  df-grp 13075  df-cmn 13356  df-abl 13357
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator