![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > isabli | GIF version |
Description: Properties that determine an Abelian group. (Contributed by NM, 4-Sep-2011.) |
Ref | Expression |
---|---|
isabli.g | ⊢ 𝐺 ∈ Grp |
isabli.b | ⊢ 𝐵 = (Base‘𝐺) |
isabli.p | ⊢ + = (+g‘𝐺) |
isabli.c | ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) |
Ref | Expression |
---|---|
isabli | ⊢ 𝐺 ∈ Abel |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isabli.g | . 2 ⊢ 𝐺 ∈ Grp | |
2 | isabli.c | . . 3 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) | |
3 | 2 | rgen2 2580 | . 2 ⊢ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥) |
4 | isabli.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
5 | isabli.p | . . 3 ⊢ + = (+g‘𝐺) | |
6 | 4, 5 | isabl2 13364 | . 2 ⊢ (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥))) |
7 | 1, 3, 6 | mpbir2an 944 | 1 ⊢ 𝐺 ∈ Abel |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 ∀wral 2472 ‘cfv 5254 (class class class)co 5918 Basecbs 12618 +gcplusg 12695 Grpcgrp 13072 Abelcabl 13355 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-un 3157 df-in 3159 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-iota 5215 df-fv 5262 df-ov 5921 df-grp 13075 df-cmn 13356 df-abl 13357 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |