| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > isabli | GIF version | ||
| Description: Properties that determine an Abelian group. (Contributed by NM, 4-Sep-2011.) |
| Ref | Expression |
|---|---|
| isabli.g | ⊢ 𝐺 ∈ Grp |
| isabli.b | ⊢ 𝐵 = (Base‘𝐺) |
| isabli.p | ⊢ + = (+g‘𝐺) |
| isabli.c | ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) |
| Ref | Expression |
|---|---|
| isabli | ⊢ 𝐺 ∈ Abel |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isabli.g | . 2 ⊢ 𝐺 ∈ Grp | |
| 2 | isabli.c | . . 3 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) | |
| 3 | 2 | rgen2 2591 | . 2 ⊢ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥) |
| 4 | isabli.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 5 | isabli.p | . . 3 ⊢ + = (+g‘𝐺) | |
| 6 | 4, 5 | isabl2 13548 | . 2 ⊢ (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥))) |
| 7 | 1, 3, 6 | mpbir2an 944 | 1 ⊢ 𝐺 ∈ Abel |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1372 ∈ wcel 2175 ∀wral 2483 ‘cfv 5268 (class class class)co 5934 Basecbs 12751 +gcplusg 12828 Grpcgrp 13250 Abelcabl 13539 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-rab 2492 df-v 2773 df-un 3169 df-in 3171 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-iota 5229 df-fv 5276 df-ov 5937 df-grp 13253 df-cmn 13540 df-abl 13541 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |