ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  supisoex Unicode version

Theorem supisoex 6702
Description: Lemma for supisoti 6703. (Contributed by Mario Carneiro, 24-Dec-2016.)
Hypotheses
Ref Expression
supiso.1  |-  ( ph  ->  F  Isom  R ,  S  ( A ,  B ) )
supiso.2  |-  ( ph  ->  C  C_  A )
supisoex.3  |-  ( ph  ->  E. x  e.  A  ( A. y  e.  C  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  C  y R z ) ) )
Assertion
Ref Expression
supisoex  |-  ( ph  ->  E. u  e.  B  ( A. w  e.  ( F " C )  -.  u S w  /\  A. w  e.  B  ( w S u  ->  E. v  e.  ( F " C
) w S v ) ) )
Distinct variable groups:    v, u, w, x, y, z, A   
u, C, v, w, x, y, z    ph, u, w    u, F, v, w, x, y, z    u, R, w, x, y, z   
u, S, v, w, x, y, z    u, B, v, w, x, y, z
Allowed substitution hints:    ph( x, y, z, v)    R( v)

Proof of Theorem supisoex
StepHypRef Expression
1 supisoex.3 . 2  |-  ( ph  ->  E. x  e.  A  ( A. y  e.  C  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  C  y R z ) ) )
2 supiso.1 . . 3  |-  ( ph  ->  F  Isom  R ,  S  ( A ,  B ) )
3 supiso.2 . . 3  |-  ( ph  ->  C  C_  A )
4 simpl 107 . . . . . 6  |-  ( ( F  Isom  R ,  S  ( A ,  B )  /\  C  C_  A )  ->  F  Isom  R ,  S  ( A ,  B ) )
5 simpr 108 . . . . . 6  |-  ( ( F  Isom  R ,  S  ( A ,  B )  /\  C  C_  A )  ->  C  C_  A )
64, 5supisolem 6701 . . . . 5  |-  ( ( ( F  Isom  R ,  S  ( A ,  B )  /\  C  C_  A )  /\  x  e.  A )  ->  (
( A. y  e.  C  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  C  y R
z ) )  <->  ( A. w  e.  ( F " C )  -.  ( F `  x ) S w  /\  A. w  e.  B  ( w S ( F `  x )  ->  E. v  e.  ( F " C
) w S v ) ) ) )
7 isof1o 5586 . . . . . . . 8  |-  ( F 
Isom  R ,  S  ( A ,  B )  ->  F : A -1-1-onto-> B
)
8 f1of 5253 . . . . . . . 8  |-  ( F : A -1-1-onto-> B  ->  F : A
--> B )
94, 7, 83syl 17 . . . . . . 7  |-  ( ( F  Isom  R ,  S  ( A ,  B )  /\  C  C_  A )  ->  F : A --> B )
109ffvelrnda 5434 . . . . . 6  |-  ( ( ( F  Isom  R ,  S  ( A ,  B )  /\  C  C_  A )  /\  x  e.  A )  ->  ( F `  x )  e.  B )
11 breq1 3848 . . . . . . . . . . 11  |-  ( u  =  ( F `  x )  ->  (
u S w  <->  ( F `  x ) S w ) )
1211notbid 627 . . . . . . . . . 10  |-  ( u  =  ( F `  x )  ->  ( -.  u S w  <->  -.  ( F `  x ) S w ) )
1312ralbidv 2380 . . . . . . . . 9  |-  ( u  =  ( F `  x )  ->  ( A. w  e.  ( F " C )  -.  u S w  <->  A. w  e.  ( F " C
)  -.  ( F `
 x ) S w ) )
14 breq2 3849 . . . . . . . . . . 11  |-  ( u  =  ( F `  x )  ->  (
w S u  <->  w S
( F `  x
) ) )
1514imbi1d 229 . . . . . . . . . 10  |-  ( u  =  ( F `  x )  ->  (
( w S u  ->  E. v  e.  ( F " C ) w S v )  <-> 
( w S ( F `  x )  ->  E. v  e.  ( F " C ) w S v ) ) )
1615ralbidv 2380 . . . . . . . . 9  |-  ( u  =  ( F `  x )  ->  ( A. w  e.  B  ( w S u  ->  E. v  e.  ( F " C ) w S v )  <->  A. w  e.  B  ( w S ( F `  x )  ->  E. v  e.  ( F " C ) w S v ) ) )
1713, 16anbi12d 457 . . . . . . . 8  |-  ( u  =  ( F `  x )  ->  (
( A. w  e.  ( F " C
)  -.  u S w  /\  A. w  e.  B  ( w S u  ->  E. v  e.  ( F " C
) w S v ) )  <->  ( A. w  e.  ( F " C )  -.  ( F `  x ) S w  /\  A. w  e.  B  ( w S ( F `  x )  ->  E. v  e.  ( F " C
) w S v ) ) ) )
1817rspcev 2722 . . . . . . 7  |-  ( ( ( F `  x
)  e.  B  /\  ( A. w  e.  ( F " C )  -.  ( F `  x ) S w  /\  A. w  e.  B  ( w S ( F `  x
)  ->  E. v  e.  ( F " C
) w S v ) ) )  ->  E. u  e.  B  ( A. w  e.  ( F " C )  -.  u S w  /\  A. w  e.  B  ( w S u  ->  E. v  e.  ( F " C
) w S v ) ) )
1918ex 113 . . . . . 6  |-  ( ( F `  x )  e.  B  ->  (
( A. w  e.  ( F " C
)  -.  ( F `
 x ) S w  /\  A. w  e.  B  ( w S ( F `  x )  ->  E. v  e.  ( F " C
) w S v ) )  ->  E. u  e.  B  ( A. w  e.  ( F " C )  -.  u S w  /\  A. w  e.  B  ( w S u  ->  E. v  e.  ( F " C
) w S v ) ) ) )
2010, 19syl 14 . . . . 5  |-  ( ( ( F  Isom  R ,  S  ( A ,  B )  /\  C  C_  A )  /\  x  e.  A )  ->  (
( A. w  e.  ( F " C
)  -.  ( F `
 x ) S w  /\  A. w  e.  B  ( w S ( F `  x )  ->  E. v  e.  ( F " C
) w S v ) )  ->  E. u  e.  B  ( A. w  e.  ( F " C )  -.  u S w  /\  A. w  e.  B  ( w S u  ->  E. v  e.  ( F " C
) w S v ) ) ) )
216, 20sylbid 148 . . . 4  |-  ( ( ( F  Isom  R ,  S  ( A ,  B )  /\  C  C_  A )  /\  x  e.  A )  ->  (
( A. y  e.  C  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  C  y R
z ) )  ->  E. u  e.  B  ( A. w  e.  ( F " C )  -.  u S w  /\  A. w  e.  B  ( w S u  ->  E. v  e.  ( F " C
) w S v ) ) ) )
2221rexlimdva 2489 . . 3  |-  ( ( F  Isom  R ,  S  ( A ,  B )  /\  C  C_  A )  ->  ( E. x  e.  A  ( A. y  e.  C  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  C  y R z ) )  ->  E. u  e.  B  ( A. w  e.  ( F " C )  -.  u S w  /\  A. w  e.  B  ( w S u  ->  E. v  e.  ( F " C
) w S v ) ) ) )
232, 3, 22syl2anc 403 . 2  |-  ( ph  ->  ( E. x  e.  A  ( A. y  e.  C  -.  x R y  /\  A. y  e.  A  (
y R x  ->  E. z  e.  C  y R z ) )  ->  E. u  e.  B  ( A. w  e.  ( F " C )  -.  u S w  /\  A. w  e.  B  ( w S u  ->  E. v  e.  ( F " C
) w S v ) ) ) )
241, 23mpd 13 1  |-  ( ph  ->  E. u  e.  B  ( A. w  e.  ( F " C )  -.  u S w  /\  A. w  e.  B  ( w S u  ->  E. v  e.  ( F " C
) w S v ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    = wceq 1289    e. wcel 1438   A.wral 2359   E.wrex 2360    C_ wss 2999   class class class wbr 3845   "cima 4441   -->wf 5011   -1-1-onto->wf1o 5014   ` cfv 5015    Isom wiso 5016
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3957  ax-pow 4009  ax-pr 4036
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-rex 2365  df-v 2621  df-sbc 2841  df-un 3003  df-in 3005  df-ss 3012  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-br 3846  df-opab 3900  df-mpt 3901  df-id 4120  df-xp 4444  df-rel 4445  df-cnv 4446  df-co 4447  df-dm 4448  df-rn 4449  df-res 4450  df-ima 4451  df-iota 4980  df-fun 5017  df-fn 5018  df-f 5019  df-f1 5020  df-fo 5021  df-f1o 5022  df-fv 5023  df-isom 5024
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator