Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > supisoex | Unicode version |
Description: Lemma for supisoti 6987. (Contributed by Mario Carneiro, 24-Dec-2016.) |
Ref | Expression |
---|---|
supiso.1 | |
supiso.2 | |
supisoex.3 |
Ref | Expression |
---|---|
supisoex |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | supisoex.3 | . 2 | |
2 | supiso.1 | . . 3 | |
3 | supiso.2 | . . 3 | |
4 | simpl 108 | . . . . . 6 | |
5 | simpr 109 | . . . . . 6 | |
6 | 4, 5 | supisolem 6985 | . . . . 5 |
7 | isof1o 5786 | . . . . . . . 8 | |
8 | f1of 5442 | . . . . . . . 8 | |
9 | 4, 7, 8 | 3syl 17 | . . . . . . 7 |
10 | 9 | ffvelrnda 5631 | . . . . . 6 |
11 | breq1 3992 | . . . . . . . . . . 11 | |
12 | 11 | notbid 662 | . . . . . . . . . 10 |
13 | 12 | ralbidv 2470 | . . . . . . . . 9 |
14 | breq2 3993 | . . . . . . . . . . 11 | |
15 | 14 | imbi1d 230 | . . . . . . . . . 10 |
16 | 15 | ralbidv 2470 | . . . . . . . . 9 |
17 | 13, 16 | anbi12d 470 | . . . . . . . 8 |
18 | 17 | rspcev 2834 | . . . . . . 7 |
19 | 18 | ex 114 | . . . . . 6 |
20 | 10, 19 | syl 14 | . . . . 5 |
21 | 6, 20 | sylbid 149 | . . . 4 |
22 | 21 | rexlimdva 2587 | . . 3 |
23 | 2, 3, 22 | syl2anc 409 | . 2 |
24 | 1, 23 | mpd 13 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wceq 1348 wcel 2141 wral 2448 wrex 2449 wss 3121 class class class wbr 3989 cima 4614 wf 5194 wf1o 5197 cfv 5198 wiso 5199 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-isom 5207 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |