Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > supisoex | Unicode version |
Description: Lemma for supisoti 6950. (Contributed by Mario Carneiro, 24-Dec-2016.) |
Ref | Expression |
---|---|
supiso.1 | |
supiso.2 | |
supisoex.3 |
Ref | Expression |
---|---|
supisoex |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | supisoex.3 | . 2 | |
2 | supiso.1 | . . 3 | |
3 | supiso.2 | . . 3 | |
4 | simpl 108 | . . . . . 6 | |
5 | simpr 109 | . . . . . 6 | |
6 | 4, 5 | supisolem 6948 | . . . . 5 |
7 | isof1o 5754 | . . . . . . . 8 | |
8 | f1of 5413 | . . . . . . . 8 | |
9 | 4, 7, 8 | 3syl 17 | . . . . . . 7 |
10 | 9 | ffvelrnda 5601 | . . . . . 6 |
11 | breq1 3968 | . . . . . . . . . . 11 | |
12 | 11 | notbid 657 | . . . . . . . . . 10 |
13 | 12 | ralbidv 2457 | . . . . . . . . 9 |
14 | breq2 3969 | . . . . . . . . . . 11 | |
15 | 14 | imbi1d 230 | . . . . . . . . . 10 |
16 | 15 | ralbidv 2457 | . . . . . . . . 9 |
17 | 13, 16 | anbi12d 465 | . . . . . . . 8 |
18 | 17 | rspcev 2816 | . . . . . . 7 |
19 | 18 | ex 114 | . . . . . 6 |
20 | 10, 19 | syl 14 | . . . . 5 |
21 | 6, 20 | sylbid 149 | . . . 4 |
22 | 21 | rexlimdva 2574 | . . 3 |
23 | 2, 3, 22 | syl2anc 409 | . 2 |
24 | 1, 23 | mpd 13 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wceq 1335 wcel 2128 wral 2435 wrex 2436 wss 3102 class class class wbr 3965 cima 4588 wf 5165 wf1o 5168 cfv 5169 wiso 5170 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4135 ax-pr 4169 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-v 2714 df-sbc 2938 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-br 3966 df-opab 4026 df-mpt 4027 df-id 4253 df-xp 4591 df-rel 4592 df-cnv 4593 df-co 4594 df-dm 4595 df-rn 4596 df-res 4597 df-ima 4598 df-iota 5134 df-fun 5171 df-fn 5172 df-f 5173 df-f1 5174 df-fo 5175 df-f1o 5176 df-fv 5177 df-isom 5178 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |