| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > supisoex | Unicode version | ||
| Description: Lemma for supisoti 7138. (Contributed by Mario Carneiro, 24-Dec-2016.) |
| Ref | Expression |
|---|---|
| supiso.1 |
|
| supiso.2 |
|
| supisoex.3 |
|
| Ref | Expression |
|---|---|
| supisoex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | supisoex.3 |
. 2
| |
| 2 | supiso.1 |
. . 3
| |
| 3 | supiso.2 |
. . 3
| |
| 4 | simpl 109 |
. . . . . 6
| |
| 5 | simpr 110 |
. . . . . 6
| |
| 6 | 4, 5 | supisolem 7136 |
. . . . 5
|
| 7 | isof1o 5899 |
. . . . . . . 8
| |
| 8 | f1of 5544 |
. . . . . . . 8
| |
| 9 | 4, 7, 8 | 3syl 17 |
. . . . . . 7
|
| 10 | 9 | ffvelcdmda 5738 |
. . . . . 6
|
| 11 | breq1 4062 |
. . . . . . . . . . 11
| |
| 12 | 11 | notbid 669 |
. . . . . . . . . 10
|
| 13 | 12 | ralbidv 2508 |
. . . . . . . . 9
|
| 14 | breq2 4063 |
. . . . . . . . . . 11
| |
| 15 | 14 | imbi1d 231 |
. . . . . . . . . 10
|
| 16 | 15 | ralbidv 2508 |
. . . . . . . . 9
|
| 17 | 13, 16 | anbi12d 473 |
. . . . . . . 8
|
| 18 | 17 | rspcev 2884 |
. . . . . . 7
|
| 19 | 18 | ex 115 |
. . . . . 6
|
| 20 | 10, 19 | syl 14 |
. . . . 5
|
| 21 | 6, 20 | sylbid 150 |
. . . 4
|
| 22 | 21 | rexlimdva 2625 |
. . 3
|
| 23 | 2, 3, 22 | syl2anc 411 |
. 2
|
| 24 | 1, 23 | mpd 13 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-sbc 3006 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-isom 5299 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |