ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isores1 Unicode version

Theorem isores1 5861
Description: An isomorphism from one well-order to another can be restricted on either well-order. (Contributed by Mario Carneiro, 15-Jan-2013.)
Assertion
Ref Expression
isores1  |-  ( H 
Isom  R ,  S  ( A ,  B )  <-> 
H  Isom  ( R  i^i  ( A  X.  A
) ) ,  S
( A ,  B
) )

Proof of Theorem isores1
StepHypRef Expression
1 isocnv 5858 . . . . 5  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  `' H  Isom  S ,  R  ( B ,  A ) )
2 isores2 5860 . . . . 5  |-  ( `' H  Isom  S ,  R  ( B ,  A )  <->  `' H  Isom  S ,  ( R  i^i  ( A  X.  A ) ) ( B ,  A ) )
31, 2sylib 122 . . . 4  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  `' H  Isom  S ,  ( R  i^i  ( A  X.  A
) ) ( B ,  A ) )
4 isocnv 5858 . . . 4  |-  ( `' H  Isom  S , 
( R  i^i  ( A  X.  A ) ) ( B ,  A
)  ->  `' `' H  Isom  ( R  i^i  ( A  X.  A
) ) ,  S
( A ,  B
) )
53, 4syl 14 . . 3  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  `' `' H  Isom  ( R  i^i  ( A  X.  A ) ) ,  S ( A ,  B ) )
6 isof1o 5854 . . . 4  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  H : A -1-1-onto-> B
)
7 f1orel 5507 . . . 4  |-  ( H : A -1-1-onto-> B  ->  Rel  H )
8 dfrel2 5120 . . . . 5  |-  ( Rel 
H  <->  `' `' H  =  H
)
9 isoeq1 5848 . . . . 5  |-  ( `' `' H  =  H  ->  ( `' `' H  Isom  ( R  i^i  ( A  X.  A ) ) ,  S ( A ,  B )  <->  H  Isom  ( R  i^i  ( A  X.  A ) ) ,  S ( A ,  B ) ) )
108, 9sylbi 121 . . . 4  |-  ( Rel 
H  ->  ( `' `' H  Isom  ( R  i^i  ( A  X.  A ) ) ,  S ( A ,  B )  <->  H  Isom  ( R  i^i  ( A  X.  A ) ) ,  S ( A ,  B ) ) )
116, 7, 103syl 17 . . 3  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  ( `' `' H  Isom  ( R  i^i  ( A  X.  A
) ) ,  S
( A ,  B
)  <->  H  Isom  ( R  i^i  ( A  X.  A ) ) ,  S ( A ,  B ) ) )
125, 11mpbid 147 . 2  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  H  Isom  ( R  i^i  ( A  X.  A ) ) ,  S ( A ,  B ) )
13 isocnv 5858 . . . . 5  |-  ( H 
Isom  ( R  i^i  ( A  X.  A
) ) ,  S
( A ,  B
)  ->  `' H  Isom  S ,  ( R  i^i  ( A  X.  A ) ) ( B ,  A ) )
1413, 2sylibr 134 . . . 4  |-  ( H 
Isom  ( R  i^i  ( A  X.  A
) ) ,  S
( A ,  B
)  ->  `' H  Isom  S ,  R  ( B ,  A ) )
15 isocnv 5858 . . . 4  |-  ( `' H  Isom  S ,  R  ( B ,  A )  ->  `' `' H  Isom  R ,  S  ( A ,  B ) )
1614, 15syl 14 . . 3  |-  ( H 
Isom  ( R  i^i  ( A  X.  A
) ) ,  S
( A ,  B
)  ->  `' `' H  Isom  R ,  S  ( A ,  B ) )
17 isof1o 5854 . . . 4  |-  ( H 
Isom  ( R  i^i  ( A  X.  A
) ) ,  S
( A ,  B
)  ->  H : A
-1-1-onto-> B )
18 isoeq1 5848 . . . . 5  |-  ( `' `' H  =  H  ->  ( `' `' H  Isom  R ,  S  ( A ,  B )  <-> 
H  Isom  R ,  S  ( A ,  B ) ) )
198, 18sylbi 121 . . . 4  |-  ( Rel 
H  ->  ( `' `' H  Isom  R ,  S  ( A ,  B )  <->  H  Isom  R ,  S  ( A ,  B ) ) )
2017, 7, 193syl 17 . . 3  |-  ( H 
Isom  ( R  i^i  ( A  X.  A
) ) ,  S
( A ,  B
)  ->  ( `' `' H  Isom  R ,  S  ( A ,  B )  <->  H  Isom  R ,  S  ( A ,  B ) ) )
2116, 20mpbid 147 . 2  |-  ( H 
Isom  ( R  i^i  ( A  X.  A
) ) ,  S
( A ,  B
)  ->  H  Isom  R ,  S  ( A ,  B ) )
2212, 21impbii 126 1  |-  ( H 
Isom  R ,  S  ( A ,  B )  <-> 
H  Isom  ( R  i^i  ( A  X.  A
) ) ,  S
( A ,  B
) )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1364    i^i cin 3156    X. cxp 4661   `'ccnv 4662   Rel wrel 4668   -1-1-onto->wf1o 5257    Isom wiso 5259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator