Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > leisorel | Unicode version |
Description: Version of isorel 5784 for strictly increasing functions on the reals. (Contributed by Mario Carneiro, 6-Apr-2015.) (Revised by Mario Carneiro, 9-Sep-2015.) |
Ref | Expression |
---|---|
leisorel |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 992 | . . 3 | |
2 | simp3r 1021 | . . 3 | |
3 | simp3l 1020 | . . 3 | |
4 | isorel 5784 | . . . 4 | |
5 | 4 | notbid 662 | . . 3 |
6 | 1, 2, 3, 5 | syl12anc 1231 | . 2 |
7 | simp2l 1018 | . . . 4 | |
8 | 7, 3 | sseldd 3148 | . . 3 |
9 | 7, 2 | sseldd 3148 | . . 3 |
10 | xrlenlt 7971 | . . 3 | |
11 | 8, 9, 10 | syl2anc 409 | . 2 |
12 | simp2r 1019 | . . . 4 | |
13 | isof1o 5783 | . . . . . 6 | |
14 | f1of 5440 | . . . . . 6 | |
15 | 1, 13, 14 | 3syl 17 | . . . . 5 |
16 | 15, 3 | ffvelrnd 5629 | . . . 4 |
17 | 12, 16 | sseldd 3148 | . . 3 |
18 | 15, 2 | ffvelrnd 5629 | . . . 4 |
19 | 12, 18 | sseldd 3148 | . . 3 |
20 | xrlenlt 7971 | . . 3 | |
21 | 17, 19, 20 | syl2anc 409 | . 2 |
22 | 6, 11, 21 | 3bitr4d 219 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 w3a 973 wcel 2141 wss 3121 class class class wbr 3987 wf 5192 wf1o 5195 cfv 5196 wiso 5197 cxr 7940 clt 7941 cle 7942 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-pow 4158 ax-pr 4192 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-br 3988 df-opab 4049 df-id 4276 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-f1 5201 df-f1o 5203 df-fv 5204 df-isom 5205 df-le 7947 |
This theorem is referenced by: seq3coll 10764 summodclem2a 11331 prodmodclem2a 11526 |
Copyright terms: Public domain | W3C validator |