| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > leisorel | Unicode version | ||
| Description: Version of isorel 5900 for strictly increasing functions on the reals. (Contributed by Mario Carneiro, 6-Apr-2015.) (Revised by Mario Carneiro, 9-Sep-2015.) |
| Ref | Expression |
|---|---|
| leisorel |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1000 |
. . 3
| |
| 2 | simp3r 1029 |
. . 3
| |
| 3 | simp3l 1028 |
. . 3
| |
| 4 | isorel 5900 |
. . . 4
| |
| 5 | 4 | notbid 669 |
. . 3
|
| 6 | 1, 2, 3, 5 | syl12anc 1248 |
. 2
|
| 7 | simp2l 1026 |
. . . 4
| |
| 8 | 7, 3 | sseldd 3202 |
. . 3
|
| 9 | 7, 2 | sseldd 3202 |
. . 3
|
| 10 | xrlenlt 8172 |
. . 3
| |
| 11 | 8, 9, 10 | syl2anc 411 |
. 2
|
| 12 | simp2r 1027 |
. . . 4
| |
| 13 | isof1o 5899 |
. . . . . 6
| |
| 14 | f1of 5544 |
. . . . . 6
| |
| 15 | 1, 13, 14 | 3syl 17 |
. . . . 5
|
| 16 | 15, 3 | ffvelcdmd 5739 |
. . . 4
|
| 17 | 12, 16 | sseldd 3202 |
. . 3
|
| 18 | 15, 2 | ffvelcdmd 5739 |
. . . 4
|
| 19 | 12, 18 | sseldd 3202 |
. . 3
|
| 20 | xrlenlt 8172 |
. . 3
| |
| 21 | 17, 19, 20 | syl2anc 411 |
. 2
|
| 22 | 6, 11, 21 | 3bitr4d 220 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-sbc 3006 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-f1o 5297 df-fv 5298 df-isom 5299 df-le 8148 |
| This theorem is referenced by: seq3coll 11024 summodclem2a 11807 prodmodclem2a 12002 |
| Copyright terms: Public domain | W3C validator |