ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  leisorel Unicode version

Theorem leisorel 10772
Description: Version of isorel 5787 for strictly increasing functions on the reals. (Contributed by Mario Carneiro, 6-Apr-2015.) (Revised by Mario Carneiro, 9-Sep-2015.)
Assertion
Ref Expression
leisorel  |-  ( ( F  Isom  <  ,  <  ( A ,  B )  /\  ( A  C_  RR* 
/\  B  C_  RR* )  /\  ( C  e.  A  /\  D  e.  A
) )  ->  ( C  <_  D  <->  ( F `  C )  <_  ( F `  D )
) )

Proof of Theorem leisorel
StepHypRef Expression
1 simp1 992 . . 3  |-  ( ( F  Isom  <  ,  <  ( A ,  B )  /\  ( A  C_  RR* 
/\  B  C_  RR* )  /\  ( C  e.  A  /\  D  e.  A
) )  ->  F  Isom  <  ,  <  ( A ,  B )
)
2 simp3r 1021 . . 3  |-  ( ( F  Isom  <  ,  <  ( A ,  B )  /\  ( A  C_  RR* 
/\  B  C_  RR* )  /\  ( C  e.  A  /\  D  e.  A
) )  ->  D  e.  A )
3 simp3l 1020 . . 3  |-  ( ( F  Isom  <  ,  <  ( A ,  B )  /\  ( A  C_  RR* 
/\  B  C_  RR* )  /\  ( C  e.  A  /\  D  e.  A
) )  ->  C  e.  A )
4 isorel 5787 . . . 4  |-  ( ( F  Isom  <  ,  <  ( A ,  B )  /\  ( D  e.  A  /\  C  e.  A ) )  -> 
( D  <  C  <->  ( F `  D )  <  ( F `  C ) ) )
54notbid 662 . . 3  |-  ( ( F  Isom  <  ,  <  ( A ,  B )  /\  ( D  e.  A  /\  C  e.  A ) )  -> 
( -.  D  < 
C  <->  -.  ( F `  D )  <  ( F `  C )
) )
61, 2, 3, 5syl12anc 1231 . 2  |-  ( ( F  Isom  <  ,  <  ( A ,  B )  /\  ( A  C_  RR* 
/\  B  C_  RR* )  /\  ( C  e.  A  /\  D  e.  A
) )  ->  ( -.  D  <  C  <->  -.  ( F `  D )  <  ( F `  C
) ) )
7 simp2l 1018 . . . 4  |-  ( ( F  Isom  <  ,  <  ( A ,  B )  /\  ( A  C_  RR* 
/\  B  C_  RR* )  /\  ( C  e.  A  /\  D  e.  A
) )  ->  A  C_ 
RR* )
87, 3sseldd 3148 . . 3  |-  ( ( F  Isom  <  ,  <  ( A ,  B )  /\  ( A  C_  RR* 
/\  B  C_  RR* )  /\  ( C  e.  A  /\  D  e.  A
) )  ->  C  e.  RR* )
97, 2sseldd 3148 . . 3  |-  ( ( F  Isom  <  ,  <  ( A ,  B )  /\  ( A  C_  RR* 
/\  B  C_  RR* )  /\  ( C  e.  A  /\  D  e.  A
) )  ->  D  e.  RR* )
10 xrlenlt 7984 . . 3  |-  ( ( C  e.  RR*  /\  D  e.  RR* )  ->  ( C  <_  D  <->  -.  D  <  C ) )
118, 9, 10syl2anc 409 . 2  |-  ( ( F  Isom  <  ,  <  ( A ,  B )  /\  ( A  C_  RR* 
/\  B  C_  RR* )  /\  ( C  e.  A  /\  D  e.  A
) )  ->  ( C  <_  D  <->  -.  D  <  C ) )
12 simp2r 1019 . . . 4  |-  ( ( F  Isom  <  ,  <  ( A ,  B )  /\  ( A  C_  RR* 
/\  B  C_  RR* )  /\  ( C  e.  A  /\  D  e.  A
) )  ->  B  C_ 
RR* )
13 isof1o 5786 . . . . . 6  |-  ( F 
Isom  <  ,  <  ( A ,  B )  ->  F : A -1-1-onto-> B )
14 f1of 5442 . . . . . 6  |-  ( F : A -1-1-onto-> B  ->  F : A
--> B )
151, 13, 143syl 17 . . . . 5  |-  ( ( F  Isom  <  ,  <  ( A ,  B )  /\  ( A  C_  RR* 
/\  B  C_  RR* )  /\  ( C  e.  A  /\  D  e.  A
) )  ->  F : A --> B )
1615, 3ffvelrnd 5632 . . . 4  |-  ( ( F  Isom  <  ,  <  ( A ,  B )  /\  ( A  C_  RR* 
/\  B  C_  RR* )  /\  ( C  e.  A  /\  D  e.  A
) )  ->  ( F `  C )  e.  B )
1712, 16sseldd 3148 . . 3  |-  ( ( F  Isom  <  ,  <  ( A ,  B )  /\  ( A  C_  RR* 
/\  B  C_  RR* )  /\  ( C  e.  A  /\  D  e.  A
) )  ->  ( F `  C )  e.  RR* )
1815, 2ffvelrnd 5632 . . . 4  |-  ( ( F  Isom  <  ,  <  ( A ,  B )  /\  ( A  C_  RR* 
/\  B  C_  RR* )  /\  ( C  e.  A  /\  D  e.  A
) )  ->  ( F `  D )  e.  B )
1912, 18sseldd 3148 . . 3  |-  ( ( F  Isom  <  ,  <  ( A ,  B )  /\  ( A  C_  RR* 
/\  B  C_  RR* )  /\  ( C  e.  A  /\  D  e.  A
) )  ->  ( F `  D )  e.  RR* )
20 xrlenlt 7984 . . 3  |-  ( ( ( F `  C
)  e.  RR*  /\  ( F `  D )  e.  RR* )  ->  (
( F `  C
)  <_  ( F `  D )  <->  -.  ( F `  D )  <  ( F `  C
) ) )
2117, 19, 20syl2anc 409 . 2  |-  ( ( F  Isom  <  ,  <  ( A ,  B )  /\  ( A  C_  RR* 
/\  B  C_  RR* )  /\  ( C  e.  A  /\  D  e.  A
) )  ->  (
( F `  C
)  <_  ( F `  D )  <->  -.  ( F `  D )  <  ( F `  C
) ) )
226, 11, 213bitr4d 219 1  |-  ( ( F  Isom  <  ,  <  ( A ,  B )  /\  ( A  C_  RR* 
/\  B  C_  RR* )  /\  ( C  e.  A  /\  D  e.  A
) )  ->  ( C  <_  D  <->  ( F `  C )  <_  ( F `  D )
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 973    e. wcel 2141    C_ wss 3121   class class class wbr 3989   -->wf 5194   -1-1-onto->wf1o 5197   ` cfv 5198    Isom wiso 5199   RR*cxr 7953    < clt 7954    <_ cle 7955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-f1o 5205  df-fv 5206  df-isom 5207  df-le 7960
This theorem is referenced by:  seq3coll  10777  summodclem2a  11344  prodmodclem2a  11539
  Copyright terms: Public domain W3C validator