ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  leisorel Unicode version

Theorem leisorel 10830
Description: Version of isorel 5822 for strictly increasing functions on the reals. (Contributed by Mario Carneiro, 6-Apr-2015.) (Revised by Mario Carneiro, 9-Sep-2015.)
Assertion
Ref Expression
leisorel  |-  ( ( F  Isom  <  ,  <  ( A ,  B )  /\  ( A  C_  RR* 
/\  B  C_  RR* )  /\  ( C  e.  A  /\  D  e.  A
) )  ->  ( C  <_  D  <->  ( F `  C )  <_  ( F `  D )
) )

Proof of Theorem leisorel
StepHypRef Expression
1 simp1 998 . . 3  |-  ( ( F  Isom  <  ,  <  ( A ,  B )  /\  ( A  C_  RR* 
/\  B  C_  RR* )  /\  ( C  e.  A  /\  D  e.  A
) )  ->  F  Isom  <  ,  <  ( A ,  B )
)
2 simp3r 1027 . . 3  |-  ( ( F  Isom  <  ,  <  ( A ,  B )  /\  ( A  C_  RR* 
/\  B  C_  RR* )  /\  ( C  e.  A  /\  D  e.  A
) )  ->  D  e.  A )
3 simp3l 1026 . . 3  |-  ( ( F  Isom  <  ,  <  ( A ,  B )  /\  ( A  C_  RR* 
/\  B  C_  RR* )  /\  ( C  e.  A  /\  D  e.  A
) )  ->  C  e.  A )
4 isorel 5822 . . . 4  |-  ( ( F  Isom  <  ,  <  ( A ,  B )  /\  ( D  e.  A  /\  C  e.  A ) )  -> 
( D  <  C  <->  ( F `  D )  <  ( F `  C ) ) )
54notbid 668 . . 3  |-  ( ( F  Isom  <  ,  <  ( A ,  B )  /\  ( D  e.  A  /\  C  e.  A ) )  -> 
( -.  D  < 
C  <->  -.  ( F `  D )  <  ( F `  C )
) )
61, 2, 3, 5syl12anc 1246 . 2  |-  ( ( F  Isom  <  ,  <  ( A ,  B )  /\  ( A  C_  RR* 
/\  B  C_  RR* )  /\  ( C  e.  A  /\  D  e.  A
) )  ->  ( -.  D  <  C  <->  -.  ( F `  D )  <  ( F `  C
) ) )
7 simp2l 1024 . . . 4  |-  ( ( F  Isom  <  ,  <  ( A ,  B )  /\  ( A  C_  RR* 
/\  B  C_  RR* )  /\  ( C  e.  A  /\  D  e.  A
) )  ->  A  C_ 
RR* )
87, 3sseldd 3168 . . 3  |-  ( ( F  Isom  <  ,  <  ( A ,  B )  /\  ( A  C_  RR* 
/\  B  C_  RR* )  /\  ( C  e.  A  /\  D  e.  A
) )  ->  C  e.  RR* )
97, 2sseldd 3168 . . 3  |-  ( ( F  Isom  <  ,  <  ( A ,  B )  /\  ( A  C_  RR* 
/\  B  C_  RR* )  /\  ( C  e.  A  /\  D  e.  A
) )  ->  D  e.  RR* )
10 xrlenlt 8035 . . 3  |-  ( ( C  e.  RR*  /\  D  e.  RR* )  ->  ( C  <_  D  <->  -.  D  <  C ) )
118, 9, 10syl2anc 411 . 2  |-  ( ( F  Isom  <  ,  <  ( A ,  B )  /\  ( A  C_  RR* 
/\  B  C_  RR* )  /\  ( C  e.  A  /\  D  e.  A
) )  ->  ( C  <_  D  <->  -.  D  <  C ) )
12 simp2r 1025 . . . 4  |-  ( ( F  Isom  <  ,  <  ( A ,  B )  /\  ( A  C_  RR* 
/\  B  C_  RR* )  /\  ( C  e.  A  /\  D  e.  A
) )  ->  B  C_ 
RR* )
13 isof1o 5821 . . . . . 6  |-  ( F 
Isom  <  ,  <  ( A ,  B )  ->  F : A -1-1-onto-> B )
14 f1of 5473 . . . . . 6  |-  ( F : A -1-1-onto-> B  ->  F : A
--> B )
151, 13, 143syl 17 . . . . 5  |-  ( ( F  Isom  <  ,  <  ( A ,  B )  /\  ( A  C_  RR* 
/\  B  C_  RR* )  /\  ( C  e.  A  /\  D  e.  A
) )  ->  F : A --> B )
1615, 3ffvelcdmd 5665 . . . 4  |-  ( ( F  Isom  <  ,  <  ( A ,  B )  /\  ( A  C_  RR* 
/\  B  C_  RR* )  /\  ( C  e.  A  /\  D  e.  A
) )  ->  ( F `  C )  e.  B )
1712, 16sseldd 3168 . . 3  |-  ( ( F  Isom  <  ,  <  ( A ,  B )  /\  ( A  C_  RR* 
/\  B  C_  RR* )  /\  ( C  e.  A  /\  D  e.  A
) )  ->  ( F `  C )  e.  RR* )
1815, 2ffvelcdmd 5665 . . . 4  |-  ( ( F  Isom  <  ,  <  ( A ,  B )  /\  ( A  C_  RR* 
/\  B  C_  RR* )  /\  ( C  e.  A  /\  D  e.  A
) )  ->  ( F `  D )  e.  B )
1912, 18sseldd 3168 . . 3  |-  ( ( F  Isom  <  ,  <  ( A ,  B )  /\  ( A  C_  RR* 
/\  B  C_  RR* )  /\  ( C  e.  A  /\  D  e.  A
) )  ->  ( F `  D )  e.  RR* )
20 xrlenlt 8035 . . 3  |-  ( ( ( F `  C
)  e.  RR*  /\  ( F `  D )  e.  RR* )  ->  (
( F `  C
)  <_  ( F `  D )  <->  -.  ( F `  D )  <  ( F `  C
) ) )
2117, 19, 20syl2anc 411 . 2  |-  ( ( F  Isom  <  ,  <  ( A ,  B )  /\  ( A  C_  RR* 
/\  B  C_  RR* )  /\  ( C  e.  A  /\  D  e.  A
) )  ->  (
( F `  C
)  <_  ( F `  D )  <->  -.  ( F `  D )  <  ( F `  C
) ) )
226, 11, 213bitr4d 220 1  |-  ( ( F  Isom  <  ,  <  ( A ,  B )  /\  ( A  C_  RR* 
/\  B  C_  RR* )  /\  ( C  e.  A  /\  D  e.  A
) )  ->  ( C  <_  D  <->  ( F `  C )  <_  ( F `  D )
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 979    e. wcel 2158    C_ wss 3141   class class class wbr 4015   -->wf 5224   -1-1-onto->wf1o 5227   ` cfv 5228    Isom wiso 5229   RR*cxr 8004    < clt 8005    <_ cle 8006
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ral 2470  df-rex 2471  df-v 2751  df-sbc 2975  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-br 4016  df-opab 4077  df-id 4305  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-f1o 5235  df-fv 5236  df-isom 5237  df-le 8011
This theorem is referenced by:  seq3coll  10835  summodclem2a  11402  prodmodclem2a  11597
  Copyright terms: Public domain W3C validator