Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > supisolem | Unicode version |
Description: Lemma for supisoti 6987. (Contributed by Mario Carneiro, 24-Dec-2016.) |
Ref | Expression |
---|---|
supiso.1 | |
supiso.2 |
Ref | Expression |
---|---|
supisolem |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | supiso.1 | . . 3 | |
2 | supiso.2 | . . 3 | |
3 | 1, 2 | jca 304 | . 2 |
4 | simpll 524 | . . . . . . . 8 | |
5 | 4 | adantr 274 | . . . . . . 7 |
6 | simplr 525 | . . . . . . 7 | |
7 | simplr 525 | . . . . . . . 8 | |
8 | 7 | sselda 3147 | . . . . . . 7 |
9 | isorel 5787 | . . . . . . 7 | |
10 | 5, 6, 8, 9 | syl12anc 1231 | . . . . . 6 |
11 | 10 | notbid 662 | . . . . 5 |
12 | 11 | ralbidva 2466 | . . . 4 |
13 | isof1o 5786 | . . . . . . 7 | |
14 | 4, 13 | syl 14 | . . . . . 6 |
15 | f1ofn 5443 | . . . . . 6 | |
16 | 14, 15 | syl 14 | . . . . 5 |
17 | breq2 3993 | . . . . . . 7 | |
18 | 17 | notbid 662 | . . . . . 6 |
19 | 18 | ralima 5735 | . . . . 5 |
20 | 16, 7, 19 | syl2anc 409 | . . . 4 |
21 | 12, 20 | bitr4d 190 | . . 3 |
22 | 4 | adantr 274 | . . . . . . 7 |
23 | simpr 109 | . . . . . . 7 | |
24 | simplr 525 | . . . . . . 7 | |
25 | isorel 5787 | . . . . . . 7 | |
26 | 22, 23, 24, 25 | syl12anc 1231 | . . . . . 6 |
27 | 22 | adantr 274 | . . . . . . . . 9 |
28 | simplr 525 | . . . . . . . . 9 | |
29 | 7 | adantr 274 | . . . . . . . . . 10 |
30 | 29 | sselda 3147 | . . . . . . . . 9 |
31 | isorel 5787 | . . . . . . . . 9 | |
32 | 27, 28, 30, 31 | syl12anc 1231 | . . . . . . . 8 |
33 | 32 | rexbidva 2467 | . . . . . . 7 |
34 | 16 | adantr 274 | . . . . . . . 8 |
35 | breq2 3993 | . . . . . . . . 9 | |
36 | 35 | rexima 5734 | . . . . . . . 8 |
37 | 34, 29, 36 | syl2anc 409 | . . . . . . 7 |
38 | 33, 37 | bitr4d 190 | . . . . . 6 |
39 | 26, 38 | imbi12d 233 | . . . . 5 |
40 | 39 | ralbidva 2466 | . . . 4 |
41 | f1ofo 5449 | . . . . 5 | |
42 | breq1 3992 | . . . . . . 7 | |
43 | breq1 3992 | . . . . . . . 8 | |
44 | 43 | rexbidv 2471 | . . . . . . 7 |
45 | 42, 44 | imbi12d 233 | . . . . . 6 |
46 | 45 | cbvfo 5764 | . . . . 5 |
47 | 14, 41, 46 | 3syl 17 | . . . 4 |
48 | 40, 47 | bitrd 187 | . . 3 |
49 | 21, 48 | anbi12d 470 | . 2 |
50 | 3, 49 | sylan 281 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wceq 1348 wcel 2141 wral 2448 wrex 2449 wss 3121 class class class wbr 3989 cima 4614 wfn 5193 wfo 5196 wf1o 5197 cfv 5198 wiso 5199 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-isom 5207 |
This theorem is referenced by: supisoex 6986 supisoti 6987 |
Copyright terms: Public domain | W3C validator |