| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > supisolem | Unicode version | ||
| Description: Lemma for supisoti 7138. (Contributed by Mario Carneiro, 24-Dec-2016.) |
| Ref | Expression |
|---|---|
| supiso.1 |
|
| supiso.2 |
|
| Ref | Expression |
|---|---|
| supisolem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | supiso.1 |
. . 3
| |
| 2 | supiso.2 |
. . 3
| |
| 3 | 1, 2 | jca 306 |
. 2
|
| 4 | simpll 527 |
. . . . . . . 8
| |
| 5 | 4 | adantr 276 |
. . . . . . 7
|
| 6 | simplr 528 |
. . . . . . 7
| |
| 7 | simplr 528 |
. . . . . . . 8
| |
| 8 | 7 | sselda 3201 |
. . . . . . 7
|
| 9 | isorel 5900 |
. . . . . . 7
| |
| 10 | 5, 6, 8, 9 | syl12anc 1248 |
. . . . . 6
|
| 11 | 10 | notbid 669 |
. . . . 5
|
| 12 | 11 | ralbidva 2504 |
. . . 4
|
| 13 | isof1o 5899 |
. . . . . . 7
| |
| 14 | 4, 13 | syl 14 |
. . . . . 6
|
| 15 | f1ofn 5545 |
. . . . . 6
| |
| 16 | 14, 15 | syl 14 |
. . . . 5
|
| 17 | breq2 4063 |
. . . . . . 7
| |
| 18 | 17 | notbid 669 |
. . . . . 6
|
| 19 | 18 | ralima 5847 |
. . . . 5
|
| 20 | 16, 7, 19 | syl2anc 411 |
. . . 4
|
| 21 | 12, 20 | bitr4d 191 |
. . 3
|
| 22 | 4 | adantr 276 |
. . . . . . 7
|
| 23 | simpr 110 |
. . . . . . 7
| |
| 24 | simplr 528 |
. . . . . . 7
| |
| 25 | isorel 5900 |
. . . . . . 7
| |
| 26 | 22, 23, 24, 25 | syl12anc 1248 |
. . . . . 6
|
| 27 | 22 | adantr 276 |
. . . . . . . . 9
|
| 28 | simplr 528 |
. . . . . . . . 9
| |
| 29 | 7 | adantr 276 |
. . . . . . . . . 10
|
| 30 | 29 | sselda 3201 |
. . . . . . . . 9
|
| 31 | isorel 5900 |
. . . . . . . . 9
| |
| 32 | 27, 28, 30, 31 | syl12anc 1248 |
. . . . . . . 8
|
| 33 | 32 | rexbidva 2505 |
. . . . . . 7
|
| 34 | 16 | adantr 276 |
. . . . . . . 8
|
| 35 | breq2 4063 |
. . . . . . . . 9
| |
| 36 | 35 | rexima 5846 |
. . . . . . . 8
|
| 37 | 34, 29, 36 | syl2anc 411 |
. . . . . . 7
|
| 38 | 33, 37 | bitr4d 191 |
. . . . . 6
|
| 39 | 26, 38 | imbi12d 234 |
. . . . 5
|
| 40 | 39 | ralbidva 2504 |
. . . 4
|
| 41 | f1ofo 5551 |
. . . . 5
| |
| 42 | breq1 4062 |
. . . . . . 7
| |
| 43 | breq1 4062 |
. . . . . . . 8
| |
| 44 | 43 | rexbidv 2509 |
. . . . . . 7
|
| 45 | 42, 44 | imbi12d 234 |
. . . . . 6
|
| 46 | 45 | cbvfo 5877 |
. . . . 5
|
| 47 | 14, 41, 46 | 3syl 17 |
. . . 4
|
| 48 | 40, 47 | bitrd 188 |
. . 3
|
| 49 | 21, 48 | anbi12d 473 |
. 2
|
| 50 | 3, 49 | sylan 283 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-sbc 3006 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-isom 5299 |
| This theorem is referenced by: supisoex 7137 supisoti 7138 |
| Copyright terms: Public domain | W3C validator |