Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > supisolem | Unicode version |
Description: Lemma for supisoti 6942. (Contributed by Mario Carneiro, 24-Dec-2016.) |
Ref | Expression |
---|---|
supiso.1 | |
supiso.2 |
Ref | Expression |
---|---|
supisolem |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | supiso.1 | . . 3 | |
2 | supiso.2 | . . 3 | |
3 | 1, 2 | jca 304 | . 2 |
4 | simpll 519 | . . . . . . . 8 | |
5 | 4 | adantr 274 | . . . . . . 7 |
6 | simplr 520 | . . . . . . 7 | |
7 | simplr 520 | . . . . . . . 8 | |
8 | 7 | sselda 3124 | . . . . . . 7 |
9 | isorel 5749 | . . . . . . 7 | |
10 | 5, 6, 8, 9 | syl12anc 1215 | . . . . . 6 |
11 | 10 | notbid 657 | . . . . 5 |
12 | 11 | ralbidva 2450 | . . . 4 |
13 | isof1o 5748 | . . . . . . 7 | |
14 | 4, 13 | syl 14 | . . . . . 6 |
15 | f1ofn 5408 | . . . . . 6 | |
16 | 14, 15 | syl 14 | . . . . 5 |
17 | breq2 3965 | . . . . . . 7 | |
18 | 17 | notbid 657 | . . . . . 6 |
19 | 18 | ralima 5697 | . . . . 5 |
20 | 16, 7, 19 | syl2anc 409 | . . . 4 |
21 | 12, 20 | bitr4d 190 | . . 3 |
22 | 4 | adantr 274 | . . . . . . 7 |
23 | simpr 109 | . . . . . . 7 | |
24 | simplr 520 | . . . . . . 7 | |
25 | isorel 5749 | . . . . . . 7 | |
26 | 22, 23, 24, 25 | syl12anc 1215 | . . . . . 6 |
27 | 22 | adantr 274 | . . . . . . . . 9 |
28 | simplr 520 | . . . . . . . . 9 | |
29 | 7 | adantr 274 | . . . . . . . . . 10 |
30 | 29 | sselda 3124 | . . . . . . . . 9 |
31 | isorel 5749 | . . . . . . . . 9 | |
32 | 27, 28, 30, 31 | syl12anc 1215 | . . . . . . . 8 |
33 | 32 | rexbidva 2451 | . . . . . . 7 |
34 | 16 | adantr 274 | . . . . . . . 8 |
35 | breq2 3965 | . . . . . . . . 9 | |
36 | 35 | rexima 5696 | . . . . . . . 8 |
37 | 34, 29, 36 | syl2anc 409 | . . . . . . 7 |
38 | 33, 37 | bitr4d 190 | . . . . . 6 |
39 | 26, 38 | imbi12d 233 | . . . . 5 |
40 | 39 | ralbidva 2450 | . . . 4 |
41 | f1ofo 5414 | . . . . 5 | |
42 | breq1 3964 | . . . . . . 7 | |
43 | breq1 3964 | . . . . . . . 8 | |
44 | 43 | rexbidv 2455 | . . . . . . 7 |
45 | 42, 44 | imbi12d 233 | . . . . . 6 |
46 | 45 | cbvfo 5726 | . . . . 5 |
47 | 14, 41, 46 | 3syl 17 | . . . 4 |
48 | 40, 47 | bitrd 187 | . . 3 |
49 | 21, 48 | anbi12d 465 | . 2 |
50 | 3, 49 | sylan 281 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wceq 1332 wcel 2125 wral 2432 wrex 2433 wss 3098 class class class wbr 3961 cima 4582 wfn 5158 wfo 5161 wf1o 5162 cfv 5163 wiso 5164 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-14 2128 ax-ext 2136 ax-sep 4078 ax-pow 4130 ax-pr 4164 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1335 df-nf 1438 df-sb 1740 df-eu 2006 df-mo 2007 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ral 2437 df-rex 2438 df-v 2711 df-sbc 2934 df-un 3102 df-in 3104 df-ss 3111 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-uni 3769 df-br 3962 df-opab 4022 df-mpt 4023 df-id 4248 df-xp 4585 df-rel 4586 df-cnv 4587 df-co 4588 df-dm 4589 df-rn 4590 df-res 4591 df-ima 4592 df-iota 5128 df-fun 5165 df-fn 5166 df-f 5167 df-f1 5168 df-fo 5169 df-f1o 5170 df-fv 5171 df-isom 5172 |
This theorem is referenced by: supisoex 6941 supisoti 6942 |
Copyright terms: Public domain | W3C validator |