ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isoso Unicode version

Theorem isoso 5868
Description: An isomorphism preserves strict ordering. (Contributed by Stefan O'Rear, 16-Nov-2014.)
Assertion
Ref Expression
isoso  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  ( R  Or  A 
<->  S  Or  B ) )

Proof of Theorem isoso
StepHypRef Expression
1 isocnv 5854 . . 3  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  `' H  Isom  S ,  R  ( B ,  A ) )
2 isosolem 5867 . . 3  |-  ( `' H  Isom  S ,  R  ( B ,  A )  ->  ( R  Or  A  ->  S  Or  B ) )
31, 2syl 14 . 2  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  ( R  Or  A  ->  S  Or  B
) )
4 isosolem 5867 . 2  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  ( S  Or  B  ->  R  Or  A
) )
53, 4impbid 129 1  |-  ( H 
Isom  R ,  S  ( A ,  B )  ->  ( R  Or  A 
<->  S  Or  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    Or wor 4326   `'ccnv 4658    Isom wiso 5255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-id 4324  df-po 4327  df-iso 4328  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-isom 5263
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator